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Abstract

Background: For patients with disorders of consciousness such as coma, a vegetative state or a minimally
conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number
processing and mental calculation are important brain functions but are difficult to detect in patients with disorders
of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised
due to the patients’ motor impairments and inability to provide sufficient motor responses for number- and
calculation-based communication.

Methods: In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual
evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of
consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (1 =6) or in a
minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the
brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness
were instructed to perform three tasks, i.e, number recognition, number comparison, and mental calculation,
including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two
number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to
evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to
evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the
brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button
to which the patients attended, further presenting the results as feedback.

Results: Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally
conscious state, and the two patients that emerged from a minimally conscious state achieved accuracies
significantly greater than the chance level. Furthermore, P300 potentials and steady state visual evoked potentials
were observed in the electroencephalography signals from the five patients.
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Conclusions: Number processing and arithmetic abilities as well as command following were demonstrated in the
five patients. Furthermore, our results suggested that through brain-computer interface systems, many cognitive
experiments may be conducted in patients with disorders of consciousness, although they cannot provide sufficient

behavioral responses.

Keywords: Number processing, Mental calculation, Disorders of consciousness, Brain computer interface, P300,

Steady-state visual evoked potential

Background

Recently, significant attention has been paid to the ex-
ploration and assessment of residual cognitive functions
in patients with disorders of consciousness (DOC), i.e.,
comas, vegetative states (VS), and minimally conscious
states (MCS), which are among the most mysterious and
least understood conditions of the human brain [1-3].
Currently, behavior-based methods are predominantly
used in evaluating patients with DOC [4]. However,
these patients usually lack the capacity for normal phys-
ical movements [5], which limits the application of
behavior-based methods in many cases. For instance,
clinical assessments based on scales such as the Glasgow
Coma Scale (GCS) or the Coma Recovery Scale-Revised
(CRS-R) rely on motor responses to external stimuli at
the time of observation [6]. Consequently, clinical mis-
diagnosis rates are relatively high, ranging from 37 to
43 % in VS and MCS patients [2, 7]. Recently, neuroim-
aging techniques such as functional magnetic resonance
imaging (fMRI), electroencephalography (EEG) and
transcranial magnetic stimulation (TMS) have been pro-
posed for use in probing residual brain function in cer-
tain patients with DOC [8, 9]. For instance, command-
specific changes were detected in fMRI or EEG signals,
and motor-independent evidence of awareness was ob-
served in several studies [1, 2, 10—15]. Furthermore, an
fMRI experiment was designed in which visual cognition
that included the passive processing of light, color, mo-
tion, coherent shapes, and object categories was assessed
in a patient with a severe DOC [3].

Number processing and mental calculation are import-
ant brain functions associated with other cognition func-
tions, including symbol representation and operation,
attention, working memory and linguistic processing
[16]. To the best of our knowledge, number processing
and mental calculation, which are expected to be im-
paired to a certain degree, have not been studied in pa-
tients with DOC. The neural basis of number processing
has been studied using neuroimaging and other neuro-
scientific methods. For instance, findings based on fMRI
as well as single-unit recordings in monkeys suggested
preferential involvement of the bilateral intraparietal sul-
cus (IPS) and the medial parietal structures in approxima-
tion and of the angular gyri in exact calculation [17-21].

Many studies have also characterized deficits in calcula-
tion performance and related them to lesion sites in
neurological patients [18]. For instance, loss of gray matter
in the IPS has been observed in two medical conditions,
prematurity [22] and Turner’s syndrome [23], which are
associated with dyscalculia. Mental calculation abilities
were found to be commonly impaired early in the course
of Alzheimer’s disease (AD) [24, 25]. The numerical defi-
cits observed in Parkinson’s disease and the functional re-
lationship between numerical and other cognitive deficits
were assessed in a study [26], the results of which sug-
gested that impairments in both working memory and ex-
ecutive function lead to secondary deficits in numerical
processing. Finally, calculation tasks have been included in
the Montreal Cognitive Assessment (MoCA) and Mini-
mental State Examination (MMSE), which are commonly
used in the evaluation of the cognitive impairments ob-
served in AD, stroke, and Parkinson’s disease [27-29].
However, clinical assessment scales such as the GCS and
the CRS-R for patients with DOC do not contain number
and calculation tasks. One possible reason is that in pa-
tients with DOC, severe motor response deficits or weak
residual motor responses are insufficient to support be-
havioral experiments that involve number processing. By
exploring number processing and mental calculation in
patients with DOC, we might be able to evaluate their re-
sidual cognitive functions more widely and observe the
extent to which the multiple brain functions associated
with number processing and calculation are impaired after
severe brain injury.

Brain-computer interfaces (BClIs) provide non-
muscular communication and control by directly trans-
lating brain activities recorded from the scalp into com-
puter control signals, thereby enabling users with motor
disabilities to convey their intent to the external world
[6, 30]. Therefore, BCIs may offer the potential to ex-
plore residual cognition functions in patients with DOC,
including number processing and calculation. When
BClIs are applied to patients with DOC, the online feed-
back may have positive effects that allow the conscious
patients to effectively perform the instructed tasks, and
feedback significantly above the level predicted by
chance provides evidence of residual brain function to
the examiners. Additionally, BCIs could serve as
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supportive tools for detecting consciousness in patients
with DOC by detecting responses to commands and
communications. Lule et al. tested a 4-choice auditory
P300-based BCI on 13 MCS, 3 VS, and 2 LIS patients,
among whom one LIS patient had a significant correct
response rate of 60 % [4]. Coyle et al. used a motor
imagery-based BCI to detect awareness in four MCS pa-
tients and to determine whether these patients may
learn to modulate sensorimotor rhythms with visual or
auditory feedback. The results indicated that all four pa-
tients achieved accuracies above the 70 % criterion level
for a 2-class BCI in multiple sessions and thus had the
capacity to operate a simple BCI-based communication
system with real-time visual and auditory feedback [14].

Recent studies have validated the effectiveness of hy-
brid BClIs, which directly combine two or more different
types of brain signals such as P300 potentials and steady
state visual evoked potentials (SSVEPs) [31]. In our pre-
vious study [32], a hybrid BCI for brain switch applica-
tion was developed in which P300 and SSVEPs were
combined to improve target detection performance. Ex-
perimental results obtained from the healthy subjects
showed that the target detection performance was better
for the hybrid BCI than for the P300- or SSVEP-based
BCL

Considering the above-mentioned factors, here, we
propose a visual hybrid BCI that combines P300 poten-
tials and SSVEPs (a variant of our previously established
system) [32] for detecting the number and calculation
abilities of patients with DOC. The patients’ real-time
answers to arithmetic problems were presented via BCI
feedback. Eleven patients participated in the experiment,
five of whom achieved accuracies significantly higher
than the chance level. Command following and number
and arithmetic abilities were thus demonstrated in these
patients. Additionally, this study showed that by applying
the BCIs, we could conduct cognitive experiments for
patients with DOC, even if they are unable to demon-
strate  sufficient behavioral responses in these
experiments.

Methods

Patients

This study was undertaken at the General Hospital of
Guangzhou Military Command of People’s Liberation
Army in Guangzhou, China, between July and December
2013. Brain activity was detected only if the patients
were free of centrally acting sedative drugs. Eleven
brain-injured Han Chinese patients participated in this
experiment (5 males; 6 VS, 3 MCS and 2 EMCS
[emerged from MCS]; mean age + standard deviation
(SD), 38.55 + 11.98 years; see Table 1). No patient had a
history of impaired visual acuity before brain injury.
Additionally, four healthy subjects (HC1, HC2, HC3,
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Table 1 Summary of patient clinical status. The clinical
diagnosis states in the brackets were obtained after the

experiment
Patient  Clinical CRS-R score (sub-scores)

diagnosis Before the experiment  After the experiment
VS1 VS (VS) 6 (1-0-2-1-0-2) 6 (1-0-2-1-0-2)
VS2 VS (EMCS) 7 (1-1-2-1-0-2) 17 (4-4-5-1-1-2)
VS3 VS (VS) 4 (1-1-0-0-0-2) 6 (1-0-2-1-0-2)
VS4 VS (EMCS) 3 (0-0-1-0-0-2) 23 (4-5-6-3-2-3)
VS5 VS (MCS) 6 (1-0-2-1-0-2) 10 2-0-4-2-0-2)
VS6 VS (VS) 5 (1-0-1-1-0-2) 6 (1-0-2-1-0-2)
MCST  MCS  (EMCS) 10 (1-3-3-1-0-2) 19 (3-5-6-1-1-3)
MCS2  MCS  (MCS) 8 (1-2-2-1-0-2) 9 (1-2-3-1-0-2)
MCS3 MCS  (MCS) 8 (1-2-2-1-0-2) 9 (1-3-2-1-0-2)
EMCST  EMCS  (EMCS) 16 (1-3-5-3-2-2) 23 (4-5-6-3-2-3)
EMCS2  EMCS  (EMCS) 14 (1-3-3-3-2-2) 20 (4-5-3-3-2-3)

Note: Coma Recovery Scale-Revised subscales: auditory, visual, motor, oromotor,
communication, and arousal functions

and HC4) with no history of neurological disease (three
males; mean age + SD, 29 + 2 years) were included in our
experiment as a control group. The experiments for pa-
tients with DOC and healthy subjects were approved by
the Ethical Committee of the General Hospital of
Guangzhou Military Command of People’s Liberation
Army in Guangzhou, which complies with the Code of
Ethics of the World Medical Association (Declaration of
Helsinki). Written informed consent was obtained from
the patients’ legal surrogates and the healthy subjects for
the experiments and publication of their individual de-
tails in this manuscript. The clinical diagnoses were
based on the CRS-R, which is composed of six subscales
that address auditory, visual, motor, oromotor, commu-
nication and arousal functions [33]. Scoring on each
subscale is based on the presence or absence of oper-
ationally defined behavioral responses to specific sensory
stimuli. For the purpose of the experiment, the eleven
patients attended two CRS-R assessments, one in the
week before the experiment and the other in the week
after the experiment. The CRS-R scores for each patient
are presented in Table 1. The VS is characterized by the
return of arousal without recovery of awareness. The
MCS is defined by the presence of inconsistent but re-
producible goal-directed behaviors (e.g., response to
command, visual pursuit, and localization of noxious
stimulation). The EMCS is characterized by reliable and
consistent demonstration of functional interactive com-
munication or functional use of two different objects.
Note that certain patients who have an amount of re-
sidual cognitive functions (e.g., command following) may
meet the behavioral criteria for VS because they cannot
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provide sufficient behavioral responses during the clin-
ical diagnoses based on the CRS-R [13, 34].

Data acquisition

A NuAmps device (Neuroscan, Compumedics Ltd,
Victoria, Australia) was used to collect scalp EEG sig-
nals. Each patient wore an EEG cap (LT 37) with Ag-
AgCl electrodes. The EEG signals were referenced to the
right mastoid. According to the standard 10-20 system
[35], the EEG signals used for analysis were recorded
from 10 electrodes: “Fz”, “Cz”, “P7”, “P3”, “Pz”, “P4”,
“P8”, “O17, “Oz” and “0O2” [32]. The EEG signals were
amplified, sampled at 250 Hz and band-pass filtered be-
tween 0.1 Hz and 30 Hz.

BCI paradigm

The Graphical User Interface (GUI) used in this study is
illustrated in Fig. 1. Two buttons displaying single-digit
Arabic numbers, one of which was the answer to the
arithmetic problem given to the patients in our experi-
ment, were displayed on the left and right sides of the
GUL Each button (size: 6.6 cm x 9 cm) was placed in the
center of a green button frame (size: 8.6 cm x 11 cm,
margin width: 1 c¢cm). The horizontal distance between
the two button frames was 4 cm in the GUI The area
ratio of the button, the button frame and the GUI was
0.07:0.1:1.

The two number buttons on the left and right sides of
the GUI flickered from appearance to disappearance at
6.0 Hz and 7.5 Hz, respectively. Simultaneously, the two
button frames flashed from appearance to disappearance
in a random order, with each appearance lasting 200 ms
and an 800-ms interval between two consecutive

Fig. 1 GUI of the hybrid BCl, in which two buttons portraying
single-digit numbers are randomly displayed on the left and right
sides in each trial. The left and right number buttons, one of which
showed the answer to an arithmetic problem given to the patients,
flickered from appearance to disappearance on a black background
at frequencies of 6.0 Hz and 7.5 Hz, respectively. Simultaneously, the
two button frames flashed in and out of view in a random order
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appearances. The patients were instructed to focus on
the target number button (the answer to an arithmetic
problem) and to count the number of flashes of the cor-
responding button frame. In this manner, the SSVEP
and P300 responses could be simultaneously elicited by
the flickering target number button and the flashing but-
ton frame, respectively.

Experimental design and procedure

During the experiment, each patient was seated in a
comfortable wheelchair approximately 0.5 m from a 22-
in LED monitor. A preliminary screening was conducted
before the experiment to explain the experimental pro-
cedure to the patient.

Before the online evaluation of the first block, each pa-
tient performed a calibration run of 10 trials using the
GUI shown in Fig. 1. Specifically, in each trial, the left
and right buttons flickered for 10 s at 6.0 Hz and 7.5 Hz,
respectively. Simultaneously, the two button frames
flashed in a random order, with each button frame flash-
ing five times. The patient was instructed to pay atten-
tion to the target number button and to count the
flashes of the corresponding button frame. We trained
an initial Support Vector Machine (SVM) classifier for
P300 detection using EEG data from the calibration run.
Furthermore, the P300 classification model was updated
after each block of online evaluation using the data from
the last two blocks (20 trials). For example, after Block
4, we used the data from Blocks 3 and 4 to update the
model for the online classification in Block 5. The ra-
tionale for training the P300 model in this manner was
threefold: first, because the patients were easily fatigued,
the calibration procedure needed to be as short as pos-
sible, and performing a new calibration run before each
evaluation block on a separate day was not appropriate;
second, due to the fluctuating state of the DOC patients,
we could not use a fixed model during the experiment,
which lasted a long time (e.g., more than 1 month);
third, to partially overcome these problems, we used a
semi-supervised learning approach for addressing a
small training dataset based on previous studies [36—38].
Specifically, we used the data from the latest trials to up-
date the SVM model. Note that the results of healthy
subjects in this study demonstrated the effectiveness of
this method for updating the SVM model.

In the online evaluation, three experimental runs were
conducted for each patient. Figure 2 illustrates the on-
line experimental paradigm. Each patient was instructed
to perform number recognition, number comparison
and mental calculation (single-digit addition and sub-
traction) in Runs 1, 2 and 3, respectively, while EEG data
were collected and processed online. Each run contained
five blocks, and each block was composed of 10 trials.
Different blocks were conducted on separate days
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Run 1: number recognition Run 2: number comparison Run 3: mental calculation

calibration | |Block 1{|Block 2||Block 3 Block 1||Block 2||Block 3

Block 4| |Block 5|

Block 4|

Block S|

Block 1|

Block 2| |Bluck 3

Block 4|

Block 5|

[triat1]  [reia2] oo [1rial 10]

\

| instruction | | feedback | blankl
0 8 18 22

stimulation

24 second

Fig. 2 Experimental paradigm. Five blocks were included for each run, and each block consisted of 10 trials. Each trial began with a visual and
auditory presentation of the task instructions. Next, two number buttons were randomly displayed on the left and right sides of the GUI. After the
instruction, the two number buttons flickered, and the two corresponding button frames were highlighted. After 10 s, auditory (i.e,, applause) and

visual feedback (i.e., number selected by the classification algorithm) were presented

because the patients were easily fatigued. Each subject
performed at most two blocks per week, and each sub-
ject accomplished 3 runs of the experiment in approxi-
mately 2 months. Note that the tasks of Runs 1, 2, and 3
became increasingly more difficult for the patient. Using
these three runs, we could evaluate the capacity for nu-
merical/symbolic processing in patients with DOC.

Each trial began with visual and auditory presentation
of the task instructions in Chinese, which lasted 8 s. The
instructions were “Focus on the target number (e.g., 8)
and count the flashes during which the target number
frame is highlighted” for Run 1 and “Focus on the lar-
ger/smaller number and count the flashes during which
the larger/smaller number frame is highlighted” for Run
2. For Run 3, a predefined addition/subtraction problem
(e.g., “3+5="?") was first presented visually and aurally.
Next, the instruction “Focus on the correct answer and
count the flashes during which the correct answer frame
is highlighted” was presented. Simultaneously, in these
three runs, two different numbers were randomly dis-
played on the left and right sides of the GUL More spe-
cifically, the two numbers were randomly chosen from
the single-digit numbers 1 to 9 for Runs 1 and 2 (one of
which was used as the target for Run 1). For Run 3, one
of the two numbers was the correct answer, and the
other was randomly chosen from the single-digit num-
bers 1 to 9. A total of 25 trials were presented for find-
ing the larger number/addition calculation; 25 trials, for
finding the smaller number/subtraction calculation for
Run 2/Run 3. After the instruction was presented, the
two buttons flickered while the two corresponding but-
ton frames flashed, as in the calibration run. The pa-
tients were asked to focus on the target number button
and count the number of flashes of the corresponding
button frame. After 10 s, a feedback number, which was
determined by the BCI algorithm, appeared in the center
of the GUL. If the result was correct, a tick and an audio
clip of applause were presented for 4 s to encourage the
patient. Otherwise, a cross was displayed for 4 s. A break

of at least 10 s occurred between two consecutive trials,
depending on the patient’s level of fatigue. During the
experiment, the patient was carefully observed by an ex-
perienced doctor to ensure task engagement. A trial was
discarded if the patient showed decreased arousal (ie.,
closed his/her eyes) or continuous body movements
(e.g., resulting in a cough) for more than 5 s. The next
trial was started after the patient showed a prolonged
period of spontaneous eye opening or reawakening.

Data analysis

The procedures for P300 and SSVEP detection have
been described previously [32]. In brief, the P300 and
SSVEP detectors were separately designed, and the EEG
data were simultaneously fed into the two detectors.

P300 detection

First, the EEG signals were filtered between 0.1 Hz and
10 Hz. For each flash of a button frame, we extracted a
segment of the EEG signal from each channel (0 to
800 ms after intensification of the button frame). This
segment was down-sampled by a rate of 5 to obtain a
data vector (with a length of 40). We concatenated the
vectors from all 10 channels to obtain a new data vector
corresponding to the button frame flash. Next, we con-
structed a features vector for each button frame by aver-
aging the data vectors across the five flashes in a trial.
All of the feature vectors were normalized by mapping
them into the range [-1, 1]. Finally, the SVM classifier
was applied to the two feature vectors corresponding to
the two buttons, and two SVM scores were obtained for
each trial.

SSVEP detection

The EEG signals were first filtered between 4 Hz and
10 Hz. After the stimulus onset, we extracted segments
of 10-s EEG signals (2500 data points) from the follow-
ing eight channels: “P7”, “P3”, “Pz’, “P4”, “P§’, “Ol’,
“Oz” and “O2” [39]. For each segment, we used the
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minimum energy combination (MEC) to combine the
signals from multiple channels [40]. Specifically, the sig-
nal vector s is defined as the weighted combination of
the channel signals.

NJ’
s = Z wiy; = Yw? | (1)
=1

where N, is the number of channels (N, =8 in this
study), Y = {yl, ...,yNy}, where y; is the ith channel sig-

nal, and w = [wl7 cey WN } is a weight vector.

To obtain the weight vector, an orthogonal projection
is used to remove any potential SSVEP activity from the
recorded signal.

Y = Y-X(X"X) X"y, (2)

where X is the SSVEP information matrix that con-
tains the sine and cosine components associated with
the harmonics of the flickering frequency, and Y is the
remaining signal matrix that contains noise, artifact, and
background brain activity.

Next, the weight vector w is found by minimizing the
energy of the signal Y

minHYwT||2 = minWYTYWT. (3)
w w

By solving the optimization problem (3), N, weight

vectors denoted as w', ..., w™ are obtained based on the
eigenvalues (Al, ...,AN},) in ascending order and the cor-
responding eigenvectors (vy, ..., vn,) as follows:
A%t VN
W=[w!, ..., w¥|= [—, ey —— ] (4)
Vi VAN,

Furthermore, N, new signals are created using these
weight vectors, as in (1). We select the first Ny of the
newly defined N, signals that satisfies

> Ai/zy:)ti >0.1 (5)

i=IN,  J

This approach can be interpreted as selecting the
number of channels to discard approximately 90 % of
the nuisance signal energy [40].

SSVEP detection is based on the N, signals obtained
as described above. Using a discrete Fourier transform-
ation, the normalized power density spectrum for the jth
signal vector of the N, signals is calculated by
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P(.f) = m (6)

S[Fer(s,)|
where f represents frequency, y; is the jth signal vector

of the N, signals, and FFT (511.> is the fast Fourier trans-

form of y;. Furthermore, Z‘FFT ()71.)‘ denotes summa-

tion over the total frequency points of the spectrum;
therefore, the sum of the power density spectrum is nor-
malized to one [41].

During the Fourier analysis, we used the zero padding
method to increase the number of data points from
2500 to 4096 (a power of 2). In this case, the frequency
resolution is 0.061 Hz. We further integrated the power

Ny
> D PGk, 7)

j=IN, k=1

A
P = —
=%

where Nj, is the number of harmonics taken into ac-
count (N =2 in this study). Thus, the power of the
SSVEP response for the ith number is P/(f,),, where f; is
the stimulation frequency of the flickering number i.

Furthermore, for each flickering number, we calculated
the ratio of the mean power in a narrow band (band
width: 0.1 Hz) to that in a wide band (band width:
1 Hz). For each trial, two power ratios were obtained for
the two buttons with different flickering frequencies.

Decision making

For each trial, we summed the SVM score for P300 de-
tection and the power ratio of SSVEP detection for each
number button and chose the number button with the
higher summed value as the feedback result.

Performance evaluation

For each subject and each run, the accuracy rate was cal-
culated as the ratio of the number of all correct re-
sponses (hits) to the total number of trials. To assess the
significance of the accuracy, we calculated the y* statistic
as shown below [42]:

=y orter ®

where fo; or fo, is the observed number of hits or mis-
ses, and fe; or fe, represents the expected number of hits
and misses, respectively. The degree of freedom was 1 in
our experiment with two possible choices for each trial.
Considering that each run of our experiment had 50 tri-
als, 25 hits and 25 misses could be expected by chance.
Using a significance level of p = 0.05, we obtained a value
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of 3.84 for y* (degree of freedom: 1), which corre-
sponded to 32 hits in 50 trials or an accuracy of 64 %.

In this study, we also used approximate entropy
(ApEn) to assess the level of consciousness in patients
with DOC. EEG-based ApEn has been shown to correl-
ate to changes in conscious state [43—-46]. The ApEn of
a time series {u(i)} can be computed as follows. First, a
sequence of m - dimension vectors X(i) is constructed:

X(0) = [u(i),u(i+1),...,u(i + m-1)], 9)

where i=1,2,..,N-m+1, and N is the data length
(2500 EEG data points in each trial in this study). The
distance between two vectors is defined as the maximum
absolute difference between the corresponding elements,
ie,

dIX (i), X ()] = max{|u(i + k)-u(j + k)|, 0ksm-1},
(10)

Next, for each X(i), the relative number of vectors X(j)
satisfying d[X(i), X(j)] <r is calculated and denoted as
N"™(i), where r is the tolerance value. Finally, the ApEn is
obtained as follows:

ApEn(m,r) = ¢"(r)-¢" (1),

1 N-m+1

(11)

N" (i)

¢"(r) = ”m7

T N-m+1 (12)

i=1

In this study, we set m =2 and r=0.25 x SD (standard
deviation of 2500 EEG data points), which could pro-
duce reasonable statistical validity for ApEn [47]. For
each trial, ApEn was computed using the “Pz” electrode,
according to the related references [43—-46].

Results

Table 2 summarizes the accuracy rates of the online ex-
periment. In Run 1, five of the eleven patients (patients
VS2, VS4, MCS1, EMCS1 and EMCS?2) achieved accur-
acies greater than 64 % (ranging from 66 to 80 %), corre-
sponding to significance levels of less than 0.05. In Run
2, five patients (patients VS2, VS4, MCS1, EMCSI1 and
EMCS2) achieved accuracies greater than 64 % (ranging
from 66 to 72 %). In Run 3, three of the five patients
(patients VS2, MCS1 and EMCS1) achieved accuracies
greater than 64 % (ranging from 64 to 66 %). For pa-
tients VS1, VS3, VS5, VS6, MCS2 and MCS3, the accur-
acies were not significant in Runs 1, 2 or 3. During the
experimental period, patients VS4 and EMCS1 began to
speak, and patient VS1 left the hospital for economic
reasons. These three patients thus performed only Runs
1 and 2. Furthermore, four healthy subjects (HC1, HC2,
HC3, and HC4) achieved accuracies higher than the
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significance level of 64 % (ranging from 88 to 100 %) in
Runs 1, 2, and 3.

Table 3 summarizes the ApEn values for the 11 pa-
tients and four healthy subjects. Five patients (VS2, VS4,
MCS1, EMCS1 and EMCS2) who obtained accuracies
higher than 64 % in Runs 1, 2 or 3 showed a mean ApEn
value of 1.074 +0.251. The other patients with accur-
acies lower than 64 % showed a mean ApEn value of
0.684 +0.227. A significant difference of ApEn values
existed between Vv’ (non-paired Student’s t-test, p<
0.001). Furthermore, four healthy subjects (HC1, HC2,
HC3, and HC4) showed a mean ApEn value of 1.011 +
0.106. No significant difference in the ApEn values was
observed between the group of five patients (VS2, VS4,
MCS1, EMCS1 and EMCS2) and the healthy group
(non-paired Student’s ¢-test, p = 0.431).

For a healthy control (HC1) and the five patients
(VS2, VS4, MCS1, EMCS1 and EMCS2) with significant
accuracies, ERP waveforms from 0 ms to 1000 ms after
stimuli onset were obtained by averaging the EEG chan-
nel signal across 50 trials in Run 1, 2 or 3. Figure 3
shows the average EEG signal amplitudes of the “Pz”
electrode for the five patients and the healthy control. A
P300-like component is apparent in all target curves.

For Runs 1, 2 and 3 and each subject (VS2, VS4,
MCS1, EMCS1, EMCS2, and HC1), we obtained two
average power density spectrum curves for the EEG sig-
nals across all trials with target buttons appearing at the
left or right of the GUI, as shown in Fig. 4. The power
spectrum for each trial was calculated using 10 s of the
EEG signal from the eight selected channels (“P7”, “P3”,
“Pz”, “P4”, “P8”, “O1”, “Oz” and “O2”), as in the SSVEP
detection. Figure 4 shows that SSVEP was evoked at the
target frequencies in most cases for the five patients and
one healthy subject. Specifically, obvious SSVEP re-
sponses appeared in Run 1 for all five patients, in Run 2
for the patients VS4, MCS1, EMCS1, and EMCS2 (at the
target frequency 7.5Hz), and in Run 3 for the patients
VS2 and EMCS2 (note: the patients VS4 and EMCS1
performed only Runs 1 and 2), whereas the SSVEP re-
sponses were apparently evoked in all three runs for the
healthy subject.

Furthermore, to determine whether the P300 or
SSVEP aspect was more effective, the offline accuracies
based on the P300 or SSVEP component for all patients
and healthy controls were calculated using the data col-
lected in Runs 1, 2, and 3 in a manner similar to that
used in the online P300 or SSVEP detection. The results
are listed in Table 4. For all runs for the 11 patients, no
significant difference in accuracy was observed between
the P300 and SSVEP components (p=0.1638, paired
Student’s t-test). However, Tables 2 and 4 show that for
the five patients with significant accuracies, the online
accuracy rates obtained by the hybrid features were
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Table 2 Online accuracy rates for the subjects
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Subject Run 1 (number recognition) Run 2 (number comparison) Run 3 (addition and subtraction) Average
Number of trials Accuracy (p-value) Number of trials Accuracy (p-value) Number of trials Accuracy (p-value) accuracy
VS1 50 60 % (0.157) 50 52 % (0.777) 56 %
51 58.8 % (0.208) 554 %
VS2 50 66 % (0.024) 50 66 % (0.024) 50 64 % (0.048) 65.3 %
52 65.4 % (0.027) 51 64.7 % (0.036) 65.4 %
VS3 50 58 % (0.258) 50 58 % (0.258) 50 48 % (0.777) 54.7 %
52 50 % (1.000) 553 %
VS4 50 70 % (0.005) 50 66 % (0.024) 68 %
55 63.6 % (0.043) 66.7 %
VS5 50 56 % (0.396) 50 60 % (0.157) 50 48 % (0.777) 54.7 %
51 56.9 % (0.327) 55 %
VS6 50 56 9% (0.396) 50 52 % (0.777) 50 52 % (0.777) 533 %
51 52.9 % (0.674) 54 %
MCS1 50 66 % (0.024) 50 72 % (0.002) 50 64 % (0.048) 67.3 %
56 67.9 % (0.008) 66 %
MCS2 50 62 % (0.090) 50 52 % (0.777) 50 46 % (0.572) 533 %
51 62.7 % (0.069) 536 %
MCS3 50 60 % (0.157) 50 56 % (0.396) 50 58 % (0.258) 58 %
53 56.6 % (0.216) 586 %
EMCS1 50 80 % (<0.001) 50 72 % (0.002) 76 %
EMCS2 50 76 % (<0.001) 50 70 % (0.005) 50 66 % (0.024) 70.7 %
54 74.1 % (<0.001) 54 64.8 % (0.030) 69.6 %
HC1 50 88 % (<0.001) 50 92 % (<0.001) 50 94 % (<0.001) 91.3 %
HC2 50 94 % (<0.001) 50 92 % (<0.001) 50 96 % (<0.001) 94 %
HC3 50 98 % (<0.001) 50 100 % (<0.001) 50 96 % (<0.001) 98 %
HC4 50 100 % (<0.001) 50 92 % (<0.001) 50 94 % (<0.001) 95.3 %

Note: For each patient two rows of results are provided. The results (in italics) in the second row were obtained based on the total number of trials (i.e., including
the rejected trials), where the empty table cells indicated that no trial was discarded in this run. For the four healthy subjects, no trials were discarded. Accuracies

with significance (p < 0.05) are highlighted in bold

significantly higher than those based on the P300 (p
=0.0027, paired Student’s ¢-test) or SSVEP compo-
nent (p =0.0028, paired Student’s t-test).

Among the six patients who were determined to be
entirely vegetative based on repeated behavioral assess-
ments, two patients (VS2 and VS4) progressed to MCS
during the experiment. Furthermore, they subsequently
emerged from MCS after the experiment. More interest-
ingly, according to the CRS-R, five patients (patients
VS2, VS§4, MCS1, EMCS1 and EMCS2) who showed sig-
nificant number processing and calculation ability im-
proved their consciousness levels to a large degree.
Table 1 shows the CRS-R scores for each patient before
and after the experiment.

Discussion
Detection of residual cognitive function and con-
sciousness in patients who survive severe brain

injury is highly challenging but crucial for accurate
diagnosis, optimal care strategies and general quality
of life. In this study, we used a hybrid BCI to ex-
plore number processing and calculation ability in
patients with DOC. Our experiment consisted of
three tasks: number recognition, number comparison
and mental calculation. Eleven patients participated
in our experiment, and five of these patients (2 VS,
1 MCS and 2 EMCS patients) showed significant
number processing and calculation abilities (Table 2).
ApEn measures the complexity (or irregularity) of a
signal (Pincus, 1991). A larger ApEn value indicates
higher irregularity, whereas a smaller ApEn value
implies a more regular signal [48]. Table 3 shows the
significant difference in ApEn between the five pa-
tients who obtained accuracy rates that were signifi-
cantly higher than the chance level (50 %) and the
other patients (p <0.05). This finding indicated that
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Table 3 Mean approximate entropy values for the subjects
Subject ApEn values (+SD)
Run 1 (number recognition) Run 2 (number comparison) Run 3 (addition and subtraction) Average
VS1 1 (+0.500) 0.876 (+0.464) 0.998 (+0.473)
VS3 0.599 (£0.112) 0.558 (+0.178) 0.642 (£0.129) 0.600 (+0.137)
VS5 0467 (+0.392) 0.514 (+0.143) 0.703 (+0.320) 0.561 (+0.300)
VS6 0.271 (+0.090) 0618 (+0432) 0456 (+0.312) 0475 (+0.339)
MCS2 0.966 (+0.332) 0.833 (+0.309) 0475 (£0.093) 0.758 (£0.328)
MCS3 1.073 (+0.228) 0.788 (+0.151) 0.598 (+0.246) 0.820 (+0.282)
Average 0.684 (+0.227)
VS2 2 (+£0.319) 1.121 (£0.324) 1.140 (£0.327) 1.167 (£0.301)
VsS4 1.021 (£0.363) 1.085 (+£0.299) 1.053 (£0.315)
MCS1 0.865 (+0.207) 0.765 (+0.245) 0.870 (+0.278) 0.833 (+0.232)
EMCS1 0.800 (+0.154) 0.862 (+0.206) 0.831 (+0.175)
EMCS2 1.247 (£0.453) 1.625 (+0.143) 1403 (+0.226) 1425 (+0.324)
Average 1.074 (+£0.251)
HC1 1.077 (£0.247) 0.904 (+0.462) 1.173 (£0.324) 1.051 (£0.361)
HC2 0.881 (+0.156) 1.065 (+0.117) 0.890 (+0.262) 0.974 (+0.153)
HC3 1 (+0.229) 1.028 (+0.246) 0911 (+0.212) 1.043 (+0.251)
HC4 1.022 (+0.280) 1.035 (£0.209) 0.951 (£0.300) 0.999 (+0.262)
Average 1 (+0.106)
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the two groups of patients were in different con-
No significant differences in
the ApEn values were observed between the group
of five patients and the healthy group (p=0.431).
Furthermore, clinical assessments based on the CRS-

scious states [43-46].

ity,

our

R showed that during the experimental period, the 5
patients recovered their levels of consciousness to a
large degree (Table 1).

In addition to number processing and calculation abil-
experimental

results also demonstrated

Table 4 Offline accuracies of individual P300 and steady-state visual evoked potential components for the patients

Patient Offline accuracy rates
Run 1 (number recognition, 50 trials) Run 2 (number comparison, 50 trials) Run 3 (addition and subtraction, 50 trials)
P300 SSVEP P300 SSVEP P300 SSVEP
VS1 54 % 60 % 56 % 54 %
VS2 60 % 68 % 60 % 58 % 64 % 60 %
VS3 60 % 50 % 56 % 46 % 50 % 46 %
VsS4 62 % 70 % 60 % 62 %
VS5 54 % 50 % 56 % 52 % 46 % 48 %
VSé 54 % 56 % 54 % 46 % 46 % 52 %
MCS1 66 % 60 % 68 % 68 % 58 % 62 %
MCS2 58 % 60 % 52 % 48 % 46 % 48 %
MCS3 58 % 58 % 54 % 50 % 54 % 54 %
EMCS1 82 % 80 % 72 % 70 %
EMCS2 72 % 64 % 68 % 64 % 64 % 62 %
HC1 84 % 80 % 88 % 82 % 90 % 90 %
HC2 92 % 90 % 88 % 86 % 92 % 90 %
HC3 96 % 94 % 98 % 96 % 90 % 92 %
HC4 98 % 92 % 88 % 88 % 94 % 88 %

Note: Accuracies with significance (=64 %, p < 0.05) are highlighted in bold
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command following ability in the five patients who ob-
tained accuracies that were significantly higher than
chance. First, the ability to follow commands was neces-
sary for the 5 patients to effectively perform the tasks in
our experiment. This finding indicates that the 5 pa-
tients paid attention to the target stimuli according to
the instructions. An important observation is that sig-
nificant differences in the evoked potential (P300 or
SSVEP) exist between the patients and the healthy con-
trols. For instance, the latent period of P300 was gener-
ally longer for the patients than for the healthy controls
(Fig. 3), as has been reported in other studies [49, 50].
Furthermore, in several patients, the SSVEP was not ap-
parently evoked as in the healthy controls (Fig. 4). In
particular, distinguishing the amplitude of peaks driven
by visual stimulation (i.e., target frequency 6 Hz or
7.5 Hz) and the amplitudes of non-task related peaks
was difficult in Run 2 for patients VS2 and EMCS2 (at
the target frequency 6 Hz) and in Run 3 for patient
MCS1. However, P300 was elicited in these cases (Fig. 3).
The main reason might be the fluctuating level of
consciousness in patients with DOC over time, as low
levels of consciousness impeded the efficient elicit-
ation of SSVEP. Another reason might be that these
patients might not simultaneously attend to the P300
and SSVEP stimuli as patient EMCS 1 and the
healthy controls did, and neglecting the P300 or
SSVEP stimuli might have allowed the corresponding
evocation to deteriorate [51-53].

The human brain has remarkable capabilities for en-
coding and manipulating information related to quan-
tities. Understanding how the brain processes numbers
and quantities is a problem that is not only important
for numerical cognition itself but is also relevant to un-
derstanding development, symbol representation and
operation, action, memory, vision, language, executive
function and cortical organization [54]. Studies on the
neural basis of human number skill have suggested that
the IPS, which can be activated in all number tasks, is
the locus of core numerical processing. Areas of the pre-
central and inferior prefrontal cortex are also activated
when subjects are engaged in mental calculation [55].
Furthermore, two distinct circuits have been identified
for arithmetic: the bilateral IPS for tasks involving the
explicit representation of magnitude and the angular
gyrus for the retrieval of previously learned facts [54, 56,
57]. Pathologies of these systems may lead to impair-
ments of number processing in the brain (e.g., acalculia
in adults and developmental dyscalculia in children). For
patients with brain damage, assessing number and calcu-
lation ability is of substantial importance. First, numbers
and calculation are important aspects of the cognition
function of the human brain. Second, to a certain de-
gree, we may understand other cognitive functions (ie.,
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language and executive function) in these patients with
DOC through the assessment of number and calculation
ability. Several scales, including the MOCA and MMSE,
contain mental calculation-based indices that are com-
monly used to evaluate mental states for patients with
AD, stroke and Parkinson disease, among others [27,
29]. For patients with DOC, clinical assessment scales
such as the GCS and the CRS-R do not contain number
and calculation tasks. The BCIs can provide the experi-
menter and the patients themselves with real-time feed-
back independent of motor responses, which makes
detecting and assessing number and calculation abilities
in patients with DOC possible, as demonstrated in this
study. Using a hybrid BCI, we successfully detected
number and calculation-related cognitive function in 5
of 11 patients with DOC. Our results showed that for
these 5 patients, their number cognition systems (includ-
ing the IPS and the angular gyrus) were at least partially
effective and that their residual brain functions included
symbol representation and operation, memory, language
and executive function, which are associated with num-
ber and calculation cognition.

Mental calculation tasks have been used in rehabilitation
training for patients with dementia and stroke. One study
reported that 12 patients participated in an experiment in-
volving 6 months of training during which they were
asked to perform such tasks as reading and arithmetic for
2 to 6 days per week [58]. Reading aloud and arithmetic
calculation was shown to improve frontal function in
people with AD-type dementia and could be useful in re-
storing their communication skills and independence.
This improvement may be explained as follows: first, read-
ing aloud and solving arithmetic problems require execu-
tive function; and second, in the case of learning therapy,
reading aloud and solving arithmetic problems improve
general cognitive functions, including communication, in-
dependence and conceptualization and executive function.
For geriatric patients with confirmed dementia, complex
dual-task-based exercise training including motor and
backward calculation resulted in improved dual-task per-
formance (deficits in attention-related cognitive perform-
ance and measures such as dual-task performance
represent early markers of dementia) [59]. Wade et al.
used three tasks, including a digit span, to assess the re-
covery of cognition in patients soon after a stroke [60]. In
the present study, of the 11 patients who participated in
our experiment, the 5 patients who achieved accuracies
that were significantly higher than the chance level im-
proved their levels of consciousness to a large degree
(Table 1).

Notably, in our experiment, several patients achieved
accuracies (approximately 70 %) that were significantly
higher than the chance level but much lower than the
performance of healthy subjects (which is generally
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higher than 90 %, according to our experience). We may
explain this result using two key factors. First, because
the patients were easily fatigued, we could not collect
sufficient training data before each online test block. In
fact, we used the data from previous blocks, which were
collected on separate days, to update the classifier for
the current block; therefore, the performance of the clas-
sifier might have been affected. Second, the level of
object-selective attention was much lower for patients
with DOC than that for healthy subjects. Further studies
are required to determine how to improve BCI accuracy
for patients with DOC.

Importantly, to perform the experimental tasks, many
cognitive functions are required, such as language com-
prehension (ie., understanding the task instructions),
object selection (i.e., attending to the BCI stimuli), nu-
merical processing (i.e., recognizing the number), and
mathematical abilities (i.e., performing the number com-
parison and mental calculation). The absence of any of
these cognitive functions could result in a failure of per-
formance. Furthermore, false-negative findings in BCI
studies are possible, even in healthy subjects. Hence,
negative results could not be used as evidence for a lack
of awareness. However, our positive results did indicate
that such cognitive functions existed in these patients,
thus demonstrating their residual awareness.

One could argue that patients with DOC often lose the
ability to fixate their gaze, which is generally necessary for
the visual P300- or SSVEP-based BCls. Actually, gaze-
dependent visual BCIs would be infeasible for a majority
of patients with DOC, although the classification perform-
ance is generally better for gaze-dependent visual BClIs
than for gaze-independent visual BCIs. For patients with
DOC, we achieved better results when we employed gaze-
independent BClIs. First, auditory-, somatosensory- or MI-
based BCI systems may provide an alternative method be-
cause these systems are eye gaze-independent approaches
[8]. Specifically, auditory BCIs may be suitable for patients
whose vision instead of hearing is impaired [61, 62]. For
the somatosensory-based BCls, the tactile stimuli have the
advantage of not depending on the auditory or visual sys-
tem [63]. Several studies have suggested that patients with
DOC might be able to use motor imagery to express vol-
itional intent [64]. However, further studies are needed to
improve the detection performance of these BCI systems
and to facilitate MI training such that they can be used for
patients with DOC. Second, various attentional mecha-
nisms, such as covert attention and feature-directed atten-
tion, have been investigated to develop gaze-independent
visual BClIs. For example, several studies have proposed
gaze-independent P300- or SSVEP-based BClIs [65, 66], in
which users fixated at the center of the screen and cov-
ertly attended to the target stimulus in the visual periph-
ery. In the present study, we used two large visual
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elements to ease the deployment of covert attention and
to improve peripheral visual acuity. We calculated the cor-
relation between the visual function CRS-R scores
(Table 1) and the average accuracies (Table 2) for eleven
patients. A significant correlation was obtained (r=0.68
and 0.89 based on the visual function CRS-R scores before
and after the experiment, respectively, and p < 0.05). Fur-
thermore, Tables 1 and 2 show that those patients who
achieved significant accuracies also had high visual func-
tion scores, including fixation, visual pursuit, object
localization and recognition. This finding implies that
these visual functions may play an important role in the
performance of visual BCIs for these patients.

Conclusion

As demonstrated in this study, BCIs can help patients
with DOC who cannot provide sufficient motor re-
sponses to output the results of number recognition and
mental calculation. Therefore, BCIs provide an effective
tool for the detection of the related abilities. Given our
focus on awareness detection, we did not consider the
rehabilitation of consciousness in our experimental de-
sign. For instance, we did not track the timeliness for pa-
tients recovering consciousness. Furthermore, in
addition to the BCI trainings, several rehabilitation treat-
ments (e.g., physical and medical rehabilitation treat-
ments) were carried out for each patient in the local
hospital. Whether these number- and calculation-based
BCI trainings were useful for the patients’ recovery re-
mains unknown. In the future, we will explore the po-
tentials of number- and calculation-based BCI training
in the rehabilitation of patients with DOC.
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