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Abstract

Background: To examine whether past and current reserve-related activities make the brain less susceptible to MS
pathology (i.e, lesions or disease-related atrophy).

Methods: This secondary analysis of a cohort study included 276 healthy controls (HC), and 65 clinically isolated
syndrome (CIS), 352 relapsing-remitting MS (RR) and 109 secondary- progressive MS (SPMS) patients. Past reserve-
related activities comprised educational and occupational attainment. Current reserve-related activities comprised
strenuous and non-strenuous activities. MRl was performed on 3 T scanner. Regression and non-parametric analysis
examined relationships between MRI metrics and reserve-related activities.

Results: Multivariate models (HC as referent) revealed significant interactions in predicting strenuous reserve-related
activities with chronic lesion burden (for CIS), brain- (for RR & SPMS), subcortical- (for CIS, RR, & SPMS) and amygdala-
(for RR) volumes. Maximal Lifetime Brain Growth was higher for RR patients who engaged in running before and

after diagnosis, rather than only before or never. Residual Brain Volume was higher in RR patients who did
weights-exercise before and after diagnosis, as compared to only before.

Conclusions: Reserve-related activities are related to brain health cross-sectionally in all MS subgroups, and
longitudinally in RR patients. Consistent with reserve theory, RR patients who maintained strenuous activities had higher
Maximal Lifetime Brain Growth and Residual Brain Volume. The study’s limitations are discussed, including the potential
for recall bias and design limitations that preclude causal inference.

Background

A growing body of research suggests that reserve is a key
concept underlying resilience to neurological disease [1].
Conceptualized as a buffer between measurable disease
pathology and actual level of function, reserve can be
studied by investigating brain maintenance [2]. Mainten-
ance theories emphasize neuro-protective mechanisms.
Current conceptualizations of reserve posit that past
enrichment activities and current stimulating leisure activ-
ities play an important role in helping an individual to
build and maintain reserve [3]. These “reserve-related ac-
tivities” in theory bring both history and current activities
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into focus. In recent work, these activities are opera-
tionalized in terms of past activities (e.g., educational
and occupational attainment) and current activities that
are considered stimulating [4-7].

Recent research has documented a protective effect of
stimulating leisure activities [6] in a broad range of dis-
ability domains in multiple sclerosis (MS) [4], such as
physical, creative, intellectual, spiritual, and cultural en-
richment. While both past and current reserve-related
activities had notable cross-sectional and longitudinal
associations with health and well-being, the current
activities trumped past activities in explaining variance
in health outcomes [4, 8]. Reserve-related activities pro-
vide a fundamental resource to the individual [9], and
are associated with better health habits, maintaining em-
ployment, and living independently [8]. Distinct from
different aspects of insight into one’s condition [10], high
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reserve-related activity engagement is associated with
underlying cognitive appraisal processes that focus on
the positive and more controllable aspects of their
condition [11].

Longitudinal data supported a significant buffering
effect of reserve, such that high-reserve individuals
showed slower disability progression over six years of
semi-annual follow-up [4]. These findings support the
idea that symptom burden worsens as damage to the
brain accumulates, and when reserve is exhausted, the
progressive stage of the disease begins [12]. To date,
however, very little research has addressed how these
reserve-related activities relate to MRI metrics of brain
health. Sumowski and colleagues reported that the nega-
tive effect of brain atrophy on information processing
efficiency was attenuated at higher levels of reserve opera-
tionalized as education, such that MS subjects with higher
levels of education were able to better withstand MS
neuropathology without suffering cognitive impairment
[13]. Further, early life enriching leisure activities were
found to be more protective against memory deficits than
cognitive inefficiency [14]. A retrospective analysis of
neuroimaging data suggested that recreational activities
protect against brain atrophy’s detrimental influence on
cognition [15].

All of these prior studies suffered from small samples
sizes and limited operationalizations of reserve or reserve-
related activities. We thus sought to use a large and rich
data set to test the hypothesis that engaging in past or
current reserve-related activities will make the brain less
susceptible to MS pathology in the forms of lesions or
disease-related atrophy. The study data set includes a large
sample with MRI data, including a substantial reference
group of healthy controls who provide important referent
information for the multivariate analyses. It includes a
novel measure estimating residual brain volume, and
includes data on exercise that captured events and pattern
changes before and after MS diagnosis. Building on an
initial descriptive study of differences in reserve-related
activities between healthy individuals and people with MS,
the present work examines how these reserve-related
activities relate to MRI metrics of Maximal Lifetime Brain
Growth and Residual Brain Volume.

Methods

Sample

This secondary analysis utilized data from an ongoing
prospective study of cardiovascular, environmental and
genetic risk factors in MS at the MS Center of the State
University of New York at Buffalo which enrolled over
1,000 subjects with clinically isolated syndrome (CIS)
[16-18], MS, healthy controls, and other neurologic
diseases [19, 20]. For the purpose of this analysis, we
focused on comparing people with CIS and MS to

Page 2 of 11

healthy controls. The sample included 65 (8 %) people
with CIS; 352 (44 %) people with relapsing-remitting MS
(RRMS); and 109 people (14 %) with secondary progres-
sive MS (SPMS). There were also 276 (34 %) age- and
gender-matched healthy controls. The inclusion criteria
for this sub-analysis were presence of sufficient ques-
tionnaire data to obtain past and current reserve-related
activity estimates. The exclusion criteria were presence
of relapse and steroid treatment in the 30 days preceding
study - entry- MRI for CIS and MS patients, pre-existing
medical conditions known to be associated with brain
pathology (cerebrovascular disease, positive history of
alcohol abuse), and pregnancy. Healthy controls needed
to meet the health-screen requirements, and had to have
a normal physical and neurological examination. They
were recruited from hospital personnel, or were respon-
dents to a local advertisement.

Procedure

All subjects were assessed with a structured epidemio-
logic questionnaire administered in-person by a trained
interviewer unaware of the subjects’ disease status [16].
This procedure was aimed at minimizing missing data.

Patient consents

This study was approved by the local State University of
New York Buffalo Health Sciences Institutional Review
Board (HSIRB #NEU2490109A) and written informed
consent was obtained from all subjects.

Measures

Patient-reported In addition to demographic character-
istics, the questionnaire queried physically strenuous
(i.e., exercise) activities as well as strenuous and non-
strenuous activities (e.g., hobbies or other pastimes), simi-
lar to those included in questionnaires investigating reserve
[8, 21]. Based on the psychometric analyses described in
[5], we created a derived measure of reserve-related activ-
ities comprised of three summary scores. These summary
scores represented composite scores comprised of average
scores for each factor score resulting from a principal com-
ponents factor analysis. The first summary score was Past
Reserve-related Activities, which summarized educational
and occupational attainment. The second was Current
Strenuous Reserve-related Activities, which included items
for currently endorsed contact sports, aerobics, swimming,
and wrestling. The third was Current Non-Strenuous
Reserve-related Activities, which included items for cur-
rently endorsed reading, browsing the internet, meditation,
and doing puzzles. These summary scores ranged from
2-10, 0-5.4, and 0-13.5, respectively. These scores re-
flect frequency of endorsement on an ordinal scale.
Table 1 shows the descriptive statistics by group.
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Table 1 Study participant demographics
Variable HC cls RRMS SPMS Test Statistic ~ P-value  P-value2
N 276 65 352 109
Gender: % female 60.87 61.54 64.77 6147 297 0.81
Mean Age (sd) 4693 (15.76) 3938 (10.99) 44.17 (10.75) 5391 (869  23.62 0.00 xxx
Mean Age at Diagnosis (sd) NA 36.25(10.92)  34.90 (941) 36.21 (10.09) 1.03 036
Median EDSS (IQR) NA 150 (1-2) 2 (3-1.5) 6 (5-6.5) 24.64 0.00 oxx
Diease Duration: mean no. years (sd) NA 565 (3.32) 13.1(7.11) 21.85(9.10) 8361 0.00 rxx
Range NA 3-20 2-41 5-45
Mean Body Mass Index (sd) 2731 (570) 2714 (586) 2740 (593) 2610 (6.01) 135 0.26
Employment Status % 201.79 0.00 Hxx
Full-time 48.22 619 4538 1132
Part-time 15.81 1.1 12.14 1038
Homemaker 3.16 7.94 347 4.72
Student 791 476 2.02 0
Unemployed 83 6.35 6.65 5.66
Retired 1383 3.17 6.65 24.53
Disabled 0 3.17 21.97 4151
Other 2.77 1.59 173 1.89
Education % 30.85 0.01 *
High school not completed 1.99 1.59 378 7.55
Graduated high school 15.54 12.7 17.15 21.7
Some college/Associate/Technical Degree 34.66 38.1 36.05 33.96
Bachelor's degree 259 30.16 23.26 19.81
Graduate/Post-graduate 2191 1746 19.77 16.98
Race % 39.52 0.00 xxx
Caucasian 83.59 92.06 91.91 95.28
Hispanic/Latino 1.56 95.24 202 0.94
Black/African-American 8.59 9841 491 283
Asian 391 100 0.58 0
American Indian/Alaska Native 039 0 0 0
Other 1.95 0 0.58 094
Past reserve-related Activities: Mean (sd) 6.60 (0.13) 6.44 (1.76) 6.27 (2.06) 5.75 (2.04) 439 0.00 wHx
Range 2-10 3-10 2-10 2-10
Strenuous reserve-related Activities: Mean (sd) 161 (0.078) 0.70 (0.67) 0.64 (0.70) 0.36 (041) 76.73 0.00 rxx
Range 0-542 0-2.83 0-3.23 0-18
Non-Strenuous reserve-related Activities : Mean(sd)  5.80 (0.16) 5.18 (2.47) 536 (2.62) 553 (2.84) 1.64 018
Range 05-1267 0-12 0-135 0-12.83

aHC Healthy Control, CIS Clinically Isolated Syndrome, RRMS Relapsing Remitting MS, SPMS Secondary Progressive MS, The F-Statistics and P-values shown are from

tests for differences between disease group for the given variable
* p<0.05; ** p<0.01; *** p<0.001

Neuroimaging Full details of the scan protocol have
been previously reported [22]. Briefly, fluid-attenuated
inversion recovery, T1 spin echo (pre and post gadolin-
ium injection) and 3D-T1 images were acquired on a
3 T GE Signa Excite HD 12.0 Twin Speed 8-channel
scanner (General Electric, Milwaukee, WI, USA). T2, T1,

and gadolinium-enhancing-lesion volumes (LV) were cal-
culated using a reliable semi-automated edge detection
contouring/thresholding technique using JIM software.
We used SIENAX to obtain normalized tissue volumes of
the brain, gray and white matter as well as the lateral
ventricles. The 3D-T1 images were preprocessed using a
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lesion filling technique to reduce the impact of white mat-
ter lesions on volumetric segmentations [23]. Tissue vol-
umes for the bilateral thalamus, caudate, putamen, globus
pallidus, hippocampus, amygdala and nucleus accumbens
were calculated using FMRIBs FIRST, a model-based
segmentation and registration tool [24].

Statistical analysis

Descriptive analyses Descriptive statistics of demographic
variables were computed by disease group, and linear
models were used to compare group values for each demo-
graphic variable.

Maximal lifetime brain growth

As previously reported [25], and consistent with other
researchers [14], we used the SIENAX scaling factor as a
surrogate for intracranial volume (ICV) to determine
Maximal Lifetime Brain Growth, since ICV is a reliable
estimate of Maximal Lifetime Brain Growth. This metric
reflects the maximum brain volume attained in the indi-
vidual’s lifetime, prior to brain atrophy associated with
aging and disease progression. In terms of reserve theory
[3], this metric would be considered brain reserve. This
variable was transformed into gender-specific z-scores in
order to adjust for the expected difference in ICV [25].

Residual brain volume

We used a regression technique to produce a measure of
residual brain volume [26]. Briefly, we regressed normal-
ized brain parenchymal volume (NBPV) against T2 lesion
volume, age, EDSS, MS disease duration, and gender to
produce per-subject measures of expected brain volume
based on demographic and overall MS disease severity.
Then, we subtracted this expected NBPV from the ob-
served NBPV. Thus, negative values represent more brain
atrophy than expected, and positive values represent less.
In terms of reserve theory [3], this metric would be related
to modifiable reserve.

Regression analyses

Data reduction See supplementary text for full descrip-
tion of data reduction analyses done prior to inferential
statistical analysis. These analyses yielded the following
MRI variables for analysis: Chronic Brain Burden (T1 and
T2 lesion volume), Active Brain Burden (Contrast-en-
hanced lesion volume), Brain Volume, and Subcortical Gray
Matter Volume. They yielded past, current strenuous, and
current non-strenuous reserve-building activities.

Multivariable analysis of MRI structural metrics To
examine the relationship between MRI metrics, disease-
group, and reserve-related activities, we computed regression
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models for each of the three reserve-related activities sum-
mary scores: past, current strenuous and current non-
strenuous. The model included relevant covariates (age
and gender); MRI composite(s) (chronic lesion burden,
active lesion burden, brain volume, and subcortical gray
matter volume in separate models); dummy variables for
MS disease group (CIS, RRMS, and SPMS), with healthy
controls as the comparison/referent group; and finally the
variables of particular interest in these analyses: the inter-
action terms between MS dummy variables and MRI met-
rics. These interaction terms test if there is a differential
relationship between MRI and reserve metrics by MS dis-
ease group. The Type I error rate for each model was 5 %.

Investigating change in strenuous activities and brain
structure in relapsing-remitting group We then cre-
ated a variable that summarized change in strenuous
activities from before and after MS diagnosis in relapsing-
remitting patients. Separate change variables were created
for each of the strenuous activities (aerobics, running,
walking, weights, yoga, and taichi); and medians were
plotted by group for the above-described two derived MRI
metrics of specific relevance to reserve: Maximal Lifetime
Brain Growth and Residual Brain Volume.
The distributions of strenuous activities by change group
were visualized using box plots, and then non-parametric
tests were used to compare the distributions, first in an
omnibus Kruskal-Wallis test and then in pairwise
Wilcoxon tests [27]. This set of analyses was only imple-
mented in the RR subgroup of MS patients for several
reasons. First, this was the largest subgroup of MS pa-
tients in the sample (n = 352), and thus the analyses would
have better statistical power to detect relevant differences.
Second, reserve theory would predict that reserve is more
intact in RR patients [12] and thus the hypothesized rela-
tionships between reserve-related activities, Maximal Life-
time Brain Growth, and current reserve would be clinically
relevant.

All analyses were implemented using Stata 13 [28] and
R Studio™ version 0.98.1103 [29].

Results

Sample

Table 1 provides the descriptive statistics on the study
sample, as well as comparisons among groups. The sam-
ple included 276 healthy controls, 65 people with CIS,
352 with RR, and 109 with SPMS. The majority of the
sample was female, and the mean age in the various sub-
samples ranged from 39-54 years. Mean age at diagnosis
in the various subsamples ranged from 35 to 36 years,
and median Expanded Disability Status Scale (EDSS)
score in the various subsamples ranged from 1.5 to 6.0.
The mean disease duration ranged from 5.7 to 21.9 years
(range 2—45 years). The sample had a body- mass- index
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consistent with being overweight. The majority of the
healthy controls, CIS and RR samples were employed
either full- or part-time, but the employed SPMS cohort
constituted only 22 % of the sample. The majority of the
sample had some college education or greater, and the
sample was predominantly Caucasian. The subsamples
included in this study differed by age, EDSS, disease
duration, employment status, education, and race.

Reserve metrics descriptive statistics and correlations by
group

Mean scores and score ranges for the various reserve-
related activities are shown in Table 1. The lowest score
ranges were in the current strenuous reserve-related ac-
tivities (range 0-5.4), and healthy controls reported the
highest scores in these activities, followed by CIS, RR,
and SPMS patients, respectively (p < 0.001). There were
no differences between subsamples in engagement in
non-strenuous activities, but group differences were
found in past-reserve building activities, with SPMS pa-
tients reported the lowest scores (p < 0.01).

Multivariable analysis of MRI structural metrics

Mean scores and standard deviations for the various
MRI metrics are provided in Additional file 1: Table S1.
Results of the regression models suggest that there are
no significant predictors of past reserve-related activities
or non-strenuous reserve-related activities (Table 2a and c).
Consequently, the regression models explained almost no
variance in past and non-strenuous reserve-related activ-
ities. In contrast, the models predicting strenuous reserve-
related activities suggested that there was a differential
positive association for CIS with chronic lesion burden;
a differential negative association for RR and SPMS
with brain volume; and a differential negative associ-
ation with CIS, RR, and SPMS with subcortical gray
matter volume, and with RR and amygdala volume
(Table 2b). Further, the models explained 10 %, 9 %,
28 %, and 29 % of the variance in strenuous reserve-related
activities, after adjusting for the number of predictors
(Table 2a-c). There were no significant group-by-active
lesion interactions predicting strenuous reserve-related
activities.

Relapsing-remitting group-specific analyses of MRI
reserve metrics

Figures la-e show box plots of Maximal Lifetime Brain
Growth (maximum lifetime brain growth) by change in
strenuous activity group for aerobics, running, walking,
weights, and yoga. On the far left is the box plot for
individuals who engaged in the strenuous activity both
before and after MS diagnosis. The box plot immediately
to the right is for those individuals who engaged only
after, then only before, then never. The far right box plot
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show the distribution on the Maximal Lifetime Brain
Growth score for those individuals missing data on that
activity.

There were significant differences between groups on
aerobics (Kruskal Wallis x* = 14.57, p = 0.01), such that
the Never group differed from the Only-After and Only-
Before groups and the Missing group differed from all
but the Never groups (Additional file 2: Table S2). There
were significant differences between groups on running
(Kruskal Wallis x*=11.77,p=0.02), such that the
Before-and-After Group differed from the Only-Before
and Never groups, and the Missing group differed from
the Only-Before and Never groups (Additional file 2:
Table S2). The non-parametric comparisons for yoga
showed trend significance (Kruskal Wallis x*=8.69,
p =0.07), with the differences being between Before-
and-After and Only-after versus Missing. There were no
significant differences in the Walking or Weights change
groups with respect to Maximal Lifetime Brain Growth.

Figures 2a-e show box plots of the Residual Brain Vol-
ume by change in strenuous- activity group for aerobics,
running, walking, weights, and yoga, set up identically to
Fig. 1a-e. There was a significant difference between groups
on weights (Kruskal Wallis > = 10.8,p = 0.03), such that the
Only-Before group differed from the Before-and-After and
the Never groups (Additional file 2: Table S2). There were
no significant differences in any of the other strenuous
change groups and Residual Brain Volume.

Discussion

Our findings suggest that MRI metrics related to chronic
lesion burden, brain volume, and subcortical gray matter
volume were differentially associated with MS groups in
predicting strenuous reserve-related activities, but not
for past activities or for current non-strenuous activities.
A closer look at changes in strenuous activities over time
in RR patients suggests that among those individuals
who provided data on these variables, people who en-
gaged in running before and after diagnosis, rather than
only before or never, had higher Maximal Lifetime Brain
Growth. That is, their current activity is associated with
pre-morbid brain size. People who engaged in aerobics
only after or only before differed from those who never
engaged in aerobics. Among those individuals who pro-
vided data on these variables, individuals who engaged in
weights-related exercise before and after diagnosis, as
compared to only before or never had lower Residual
Brain Volume. These findings suggest that reserve-related
activities are related to brain health both cross-sectionally
in MS subgroups, and with regard to changes in activities
over time in RR patients. These findings support the im-
portance of environmental factors in facilitating reserve-
related activities and potentially buffering individuals from
disease burden and progression.
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Table 2 a-c Regression models predicting reserve-related activities®

Dependent Variable:

2a Past Reserve Building Activities 2b Strenuous Current reserve-related Activities 2c Non-Strenuous Current reserve-related Activities

Predictors B t p Predictors B t p Predictors B t p

Chronic lesion burden models
Age 0.01 013 090 Age -0.19 -394 000 Age -0.05 -0.94 0.35
Gender -002 -042 068 Gender -0.07 -1.72 009  Gender -0.05 -1.07 0.29
Chronic Burden -031 -1.25 021 Chronic Burden -0.34 -146  0.15  Chronic Burden 0.20 0.82 041
cls 0.01 008 094 dIS -0.37 -504 000 dIS -0.03 -043 067
RR -003 -024 081 RR -0.51 -533 000 RR 0.09 0.87 0.38
PMS -014 =137 017 PMS -0.51 -542 000 PMS 0.13 132 0.19
Chronic X CIS 001 018 086 Chronic X CIS 0.15 258 001 Chronic X CIS 0.06 1.05 029
Chronic X RR 017 085 039 Chronic X RR 0.26 141 0.16  Chronic X RR -0.14 -0.70 049
Chronic X SPMS 030 142 0.6 Chronic X SPMS 030 1.51 0.13  Chronic X SPMS -0.17 -0.83 041
Adjusted R-squared  0.00 Adjusted R-squared ~ 0.10 Adjusted R-squared 0.00
N 523 N 526 N 535

Active lesion burden models
Age 000 -009 093 Age -0.18 -383 000 Age -0.07 -140 0.16
Gender -001 -033 074 Gender -0.08 -184 007  Gender -0.04 -0.88 038
Active Burden -004 000 1.00 Active Burden -11.72  -089 038 Active Burden -4.71 -0.34 073
cls -009 -081 042 CIS -048 -495 000 CIS -0.10 -0.99 032
RR -0.17 =109 028 RR -0.75 -539 000 RR -0.10 -067 0.50
PMS -022 =155 012 PMS -0.73 -559 000 PMS -0.03 -0.25 0.81
Active X CIS 001 000 100 Active XCIS 281 09 037  Active X CIS 1.02 034 0.73
Active X RR 0.01 000 100 Active XRR 11.42 0.89 038  Active X RR 4.56 0.34 0.73
Active X SPMS -002 -003 097 Active X SPMS 0.51 0.84 040  Active X SPMS 0.15 0.24 0.81
Adjusted R-squared -0.01 Adjusted R-squared  0.09 Adjusted R-squared 0.00
N 504 N 505 N 514

Brain volume models
Age 003 066 051 Age -0.13 -312 000 Age 0.03 0.55 0.58
Gender -002 -052 060 Gender 0.01 045 065  Gender -0.01 -0.32 0.75
Brain Volume* 009 100 032 Brain Volume* 022 3.08 000  Brain Volume* 0.10 1.16 025
White Matter Vol. -001 -009 093 White Matter Vol. 0.11 140 0.16  White Matter Vol. -0.10 -1.02 031
cls 019 022 082 dS 0.92 1.26 0.21 cls 0.32 0.39 0.70
RR -086 -1.13 026 RR 0.98 1.59 011 RR -045 -0.60 0.55
SPMS 072 097 033 SPMS 1.20 1.98 005  SPMS -1.09 -1.50 0.13
Brain Vol X CIS -031 -0.57 057 Brain Vol X CIS -0.61 -134 018  Brain Vol X CIS -0.12 -0.23 0.82
Brain Vol X RR -004 -009 093 Brain Vol X RR -1.01 -258 001  Brain Vol X RR 0.06 0.13 0.90
Brain Vol X SPMS -0.71 -147 0.4 Brain Vol X SPMS -0.78 -198 005  Brain Vol X SPMS -0.18 -0.38 0.70
WMV X CIS 011 016 087 WMV XCS -0.60 -097 033 WMVXCIS -0.25 -040 0.69
WMV X RR 08 125 021 WMV XRR -044 -078 044 WMV XRR 0.35 0.52 061
WMV X SPMS -0.12 -020 084 WMV X SPMS -0.77 -160 011 WMV X SPMS 1.25 219 0.03
Adjusted R-squared  0.01 Adjusted R-squared  0.28 Adjusted R-squared 0.00
N 732 N 759 N 757
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Table 2 a-c Regression models predicting reserve-related activities® (Continued)

Subcortical gray matter volume models
Age 003 074 046 Age -0.15 -411 000 Age -0.01 -0.19 0.85
Gender -002 -043 067 Gender 0.02 0.70 049  Gender -0.01 -0.38 0.71
Subcortical Health* 0.12  1.10 027 Subcortical Health* 035 4.01 000  Subcortical Health* 0.01 0.11 091
Amygdala Vol. -002 -027 078 Amygdala Vol. -0.16 -239 002  Amygdala Vol. 0.06 0.81 042
cls 000 -001 100 CIS 0.60 1.26 021 ds -0.27 -045 065
RR -027 -047 064 RR 037 0.81 042 RR -0.03 -0.05 0.96
SPMS 037 072 047 SPMS 0.48 1.18 024  SPMS 0.05 0.11 091
Subcortical X CIS 004 006 095 Subcortical X CIS -1.03 -207 004  Subcortical X CIS 022 037 0.71
Subcortical X RR 016 027 079 Subcortical X RR -1.57 -343 000  Subcortical X RR 0.24 044 0.66
Subcortical X SPMS =064 -1.26 021 Subcortical X SPMS ~ -1.29 -312 000  Subcortical X SPMS -0.03 -0.06 0.95
Amygdala X CIS -006 -0.17 087 Amygdala X CIS 0.15 0.52 061  Amygdala X CIS -0.01 -0.04 097
Amygdala X RR 008 022 083 Amygdala X RR 0.77 2.70 001  Amygdala X RR -0.27 -0.79 043
Amygdala X SPMS 019 058 056 Amygdala X SPMS 048 1.83 007  Amygdala X SPMS -0.04 -0.12 0.90
Adjusted R-squared  0.01 Adjusted R-squared ~ 0.29 Adjusted R-squared -0.01
N 731 N 758 N 756

(IS, Clinically Isolated Syndrome, RRMS Relapsing Remitting MS, SPMS Secondary Progressive MS
“Interaction terms are denoted by “X’ between main effect terms in the bottom section of each table. The referent group is healthy controls

There are limitations to our findings which must be
considered. First, this is an observational study that inves-
tigates a research question that has not been addressed be-
fore. Accordingly, we did not have a priori hypotheses,
nor did we know how many comparisons we would make
a priori; we thus did not adjust for multiple comparisons
in our statistical analyses. We are simply reporting on
what was observed in this relatively large observational co-
hort study. Future research by others might examine this
research question in an independent sample and evaluate
whether the effects detected are small, medium, or large
effect sizes. Further, because the data are cross-sectional,
they may suffer from biases associated with retrospective
self-report. Our ability to make causal inferences is thus
hindered: the findings could either reflect a buffering ef-
fect or reverse causality—that people with worse health
outcomes participate in fewer stimulating leisure activities
because of their worse health. Further, the confidence in-
tervals for the ‘never’ group in all of the plots shown in
Figs. 1a-e and 2a-e are very wide, suggesting that this is a
‘noisy’” estimate which should be interpreted with caution.
Additionally, we did not assess neurocognitive status or
other factors associated with brain health, such as genetic
contributions or trauma. In the subgroup analysis focused
on RR patients, our findings were consistent with our hy-
pothesis, suggesting that higher Maximal Lifetime Brain
Growth and current reserve are associated with maintain-
ing strenuous activities in spite of having an MS diagnosis.
It is equally possible, however, that people with more
aggressive MS are less likely to continue strenuous activity

because of physical disability or transient heat-related
symptom worsening. Additionally, the varying sample
sizes by MS group and missing data result in varying stat-
istical power for the multivariate comparisons, and pos-
sible biases in the strenuous-change analyses. We tried to
counteract this challenge by using non-parametric ana-
lyses, and by explicitly comparing results on the missing-
data group.

It is notable that a large number of statistical compari-
sons were done, while relatively few statistically significant
associations were found. While this study was initiated
without a priori hypotheses that would have driven spe-
cific hypothesis- testing or power calculations aimed at
detecting pre-specified effect sizes, the number of compar-
isons done might have led to false positive findings. Rather
than employing one or another conservative adjustment
for the Type I error rate, we simply describe our findings.
We hope that the high level of transparency we have
strived for regarding the analyses done will facilitate future
research aimed at replicating and confirming the findings
It is also possible that the MRI metrics used here are not
sensitive enough to measure plasticity. Research on brain
plasticity suggests that stimulating activities are associated
with structural brain changes [30]. Strenuous activities,
such as aerobic exercise, have been associated with in-
creased neurogenesis in the dentate gyrus of the hippo-
campus, and upregulation of brain-derived neurotrophic
factor [31]. Cognitive training has been found to result in
focal volume changes in areas relevant to task demand
[32, 33]. Barulli and Stern [2] suggest that these findings
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Fig. 1 a-e Box plots of Maximal Lifetime Brain Growth in RRMS patients. Shown by change in strenuous activity group for aerobics, running, walking,
weights, and yoga. On the far left is the box plot for individuals who engaged in the strenuous activity both before and after MS diagnosis. The box plot
immediately to the right is for those individuals who engaged only after, then only before, then never. The far right box plot show the distribution on
the Maximal Lifetime Brain Growth score for those individuals missing data on that activity

support the long-term benefits of intellectual stimulation
and physical exercise, and that such exposures may not
only help the brain to adapt to structural changes, but also
may help to prevent those changes to begin with. Future
research might use connectome structural and functional

MRI measures to address reserve.

brain health.

Despite the above limitations, the study’s strengths are
substantial: it has a large sample with MRI data, includes
healthy controls as a reference group, utilizes novel MRI
metrics, and captures exercise patterns before and after
MS diagnosis to allow an evaluation of the its impact on
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Fig. 2 a-e Box plots of Residual Brain Volume in RRMS patients. Shown by change in strenuous activity group for aerobics, running, walking, weights, and
yoga. On the far left is the box plot for individuals who engaged in the strenuous activity both before and after MS diagnosis. The box plot immediately to
the right is for those individuals who engaged only after, then only before, then never. The far right box plot show the distribution on the Residual Brain
Volume score for those individuals missing data on that activity

Conclusions

Our findings are suggestive that MRI metrics relate to
reserve-related activities, although our cross-sectional de-
sign renders our findings somewhat unclear with regard to
direction of association in the correlations or multivariate
models. Prospective research is needed to definitively sup-
port the buffering effect of reserve-related activities, but we
believe that the findings of the present study build on a
growing evidence base that should encourage people with
MS to maintain their engagement in a range of strenuous
stimulating activities to promote health and prevent dis-
ability progression.
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