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Abstract

Background: Complaints of imbalance are common non-resolving signs in individuals with post-concussive
syndrome. Yet, there is no consensus rehabilitation for non-resolving balance complaints following mild traumatic
brain injury (mTBI). The heterogeneity of balance deficits and varied rates of recovery suggest varied etiologies and
a need for interventions that address the underlying causes of poor balance function. Our central hypothesis is that
most chronic balance deficits after mTBI result from impairments in central sensorimotor integration that may be
helped by rehabilitation. Two studies are described to 1) characterize balance deficits in people with mTBI who
have chronic, non-resolving balance deficits compared to healthy control subjects, and 2) determine the efficacy of
an augmented vestibular rehabilitation program using auditory biofeedback to improve central sensorimotor
integration, static and dynamic balance, and functional activity in patients with chronic mTBI.

Methods: Two studies are described. Study 1 is a cross-sectional study to take place jointly at Oregon Health and
Science University and the VA Portland Health Care System. The study participants will be individuals with non-
resolving complaints of balance following mTBI and age- and gender-matched controls who meet all inclusion
criteria. The primary outcome will be measures of central sensorimotor integration derived from a novel central
sensorimotor integration test. Study 2 is a randomized controlled intervention to take place at Oregon Health &
Science University. In this study, participants from Study 1 with mTBI and abnormal central sensorimotor integration
will be randomized into two rehabilitation interventions. The interventions will be 6 weeks of vestibular
rehabilitation 1) with or 2) without the use of an auditory biofeedback device. The primary outcome measure is the
daily activity of the participants measured using an inertial sensor.

Discussion: The results of these two studies will improve our understanding of the nature of balance deficits in
people with mTBI by providing quantitative metrics of central sensorimotor integration, balance, and vestibular and
ocular motor function. Study 2 will examine the potential for augmented rehabilitation interventions to improve
central sensorimotor integration.

Trial registration: This trial is registered at clinicaltrials.gov (NCT02748109)
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Background
Between 1.6 and 3.8 million sports-related mild trau-
matic brain injuries (mTBI) occur annually in the United
States [1] and up to 15% of military combat veterans
sustain mTBI [2]. The estimated annual cost of TBI,
including lost productivity, exceeds $60 billion [3].
While self-reported symptoms of mTBI typically recover
within three months [4], between 11 and 64% of individ-
uals, depending on diagnostic criteria, develop post-
concussive syndrome with persistent, non-resolving
symptoms [5]. Despite the high incidence and cost to so-
ciety, studies investigating the treatment of chronic
mTBI symptoms have been scarce. In particular, com-
plaints of imbalance are common following mTBI [6, 7]
and are significant contributors to anxiety and difficulty
returning to work [8]. Yet, there is currently no consen-
sus, evidence-based rehabilitation procedure for balance
complaints following mTBI [9].
The difficulty establishing consensus rehabilitation

protocols is likely due to the complex nature of balance
deficits in individuals with mTBI that can include neuro-
logical damage to the brainstem [10, 11], thalamus [12],
and cerebellum [13], and / or injury to peripheral ves-
tibular organs [14–17]. Sensory information from the
vestibular, visual, and somatosensory systems are inte-
grated in the central nervous system to control static
and dynamic balance (Fig. 1). In patients with mTBI,
vestibular function can be impaired by damage to the
peripheral vestibular organs. The semicircular canals can
be impaired in up to two-thirds of individuals with
mTBI [15, 17], and the otolith organs are also suscep-
tible to damage from mTBI [14, 16]. In addition to dis-
rupting vestibular function, mTBI has also been linked
with central deficits affecting ocular motor function in-
cluding extended saccadic latency [18] and poor visual
tracking accuracy during smooth pursuit tasks [19, 20].
In one study, 60% of individuals with mTBI had errors
during pursuit whereas no controls exhibited similar
errors [21].
A proportion of individuals with mTBI who do not

have prominent or measurable sensory deficits may still
have balance problems attributable to abnormal central
control of balance. Central sensorimotor integration is a
critical aspect of balance control that may underlie dys-
function in static and dynamic balance. Proper central
sensorimotor integration relies on the central nervous
system to 1) select the optimal combination of sensory
sources for balance and 2) reweight the sensory contri-
butions as sensory conditions change [22, 23]. When
peripheral vestibular, visual, and somatosensory systems
are intact, difficulty performing static or dynamic bal-
ance tasks under challenging surface and/or visual con-
ditions may be due to centrally-mediated suboptimal
weighting and/or reweighting of vestibular, visual, and

somatosensory information or due to abnormal sensory-
to-motor transformations that inappropriately scale the
magnitude of corrective motor actions [22–24]. For
example, standing or walking on compliant foam or ir-
regular surfaces requires the nervous system to rely
more on vestibular and visual inputs while down-
weighting the normal dependence on somatosensory
information [22]. This reweighting is also important for
individuals with sensory impairment, as altered patterns
of weighting are necessary to compensate for the sensory
dysfunction. Some patterns of compensation may be
more functional than others, suggesting an important
role of rehabilitation in helping subjects develop effect-
ive compensation strategies to improve recovery of cen-
tral sensorimotor integration and balance [24]. However,
central sensorimotor integration has not been systemat-
ically characterized in patients with mTBI, regardless of
sensory loss.
The lack of knowledge about central sensorimotor in-

tegration following mTBI may be in part due to the
current clinical tools used to assess balance, gait, and
sensorimotor integration. The Balance Error Scoring
System (BESS) is the most frequently administered clinical
balance assessment for patients with suspected mTBI. Yet,
the BESS suffers from a high degree of subjectivity, pro-
vides only limited, low-resolution information about the

Fig. 1 Sensory systems contributing to static and dynamic balance
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balance control system [25], and is not sensitive beyond
the acute stages of mTBI [26]. Balance measures using
force platforms and sophisticated post-processing and
analysis techniques have shown greater sensitivity in de-
tecting long-lasting postural deficits [27–31]. Similar to
static balance, measures of dynamic balance, such as trunk
motion during gait [32–35] have shown persistent impair-
ment post-concussion. Sensitive, objective measures of
balance can be obtained using wearable sensors [36–39]
and are well-suited for clinical and rehabilitation environ-
ments [40, 41].
For instance, wearable sensors enable biofeedback

based on quantitative measurements of balance and gait.
Specifically, auditory biofeedback (ABF), which commu-
nicates sway through changes in the pitch or location of
a tone, has shown promise in aiding balance and retrain-
ing central sensory integration mechanisms in popula-
tions with balance impairments [42, 43]. Quantitative
measures of sway and body position are communicated
to the patient via audition, in real-time, to augment
existing sensory information and provide accurate infor-
mation to the central nervous system about body sway
that may help recalibrate distorted sensory integration.
Compared to visual biofeedback paradigms, ABF is
particularly well suited for populations with mTBI as the
auditory cue does not interfere with other postural sen-
sory systems, such as vision.
The heterogeneity of balance deficits and varied rates

of recovery after mTBI suggest varied etiologies and a
need for interventions that address the underlying
causes of poor balance function. Over-simplified clinical
balance measures often do not account for the complex
integration of sensory and motor systems. Therefore, the
first goal of this study is to characterize balance deficits
in people with mTBI who have chronic, non-resolving
balance deficits compared to healthy control subjects
without a history of mTBI. We hypothesize that a) ob-
jective measures of central sensorimotor integration,
static and dynamic balance will better distinguish people
with mTBI from control subjects than clinical measures,
b) a subset of people with mTBI will have abnormal
central sensorimotor integration test measures, even
without peripheral vestibular or ocular motor deficits,
and c) the relationship between poorer static/dynamic
balance performance and mTBI is regulated/mediated by
central sensorimotor integration. The second goal is to
determine if augmenting a traditional balance rehabilita-
tion program with a wearable-sensor based ABF system
improves central sensory integration in patients with
chronic mTBI compared to the standard balance
rehabilitation program. Our central hypothesis is that
chronic balance deficits after mTBI result from impair-
ments in central sensorimotor integration that may be
helped by rehabilitation that challenges balance while

simultaneously providing feedback on balance perform-
ance. We hypothesize that a) central sensorimotor inte-
gration scores will improve with rehabilitation and ABF
will increase the improvement of central sensorimotor
integration scores beyond the standard of care, b) inter-
vention with ABF will improve objective measures of
balance and c) people with central sensorimotor integra-
tion impairment will show sustained improvement in
central sensorimotor integration scores and balance after
rehabilitation with ABF.

Methods / Design
This study has two parts: Study 1) A cross-sectional study
to identify and characterize balance control strategies after
mTBI compared to healthy controls, and Study 2) An
interventional randomized pilot study using a novel ABF
rehabilitation technique to improve central sensorimotor
integration after mTBI. All subjects will complete baseline
clinical sensory, ocular motor, vestibular, neurocognitive,
static and dynamic balance, and central sensorimotor inte-
gration testing. Following baseline testing, a subset of
mTBI participants will be randomized into two treatment
groups for 6 weeks of rehabilitation. Within 1 week after
completing the rehabilitation program, subjects will repeat
the balance and central sensorimotor integration testing
to examine the short-term effects of rehabilitation. Sub-
jects will complete the balance and central sensorimotor
integration testing a third time, 6 weeks after completion
of the rehabilitation, to assess retention. This trial is regis-
tered at clinicaltrials.gov (NCT02748109).

Participants
The study will include 65 mTBI participants and 65
control subjects for the cross-sectional arm of the
study. All subjects will be between the ages of 18 and
60. Participants in the mTBI group will have a diag-
nosed mTBI or concussion and chronic, non-resolving
complaints of balance problems determined by a
score >0 on the Dizziness Handicap Inventory (DHI)
at the time of testing and > 3 months post-injury.
Control subjects will be gender and age matched to
the mTBI group. For the second arm of the study, a
subset of 40 mTBI subjects with abnormal central
sensorimotor integration with or without peripheral
vestibular or ocular motor deficits will be randomized
into two rehabilitation groups, experimental treatment
and standard of care, consisting of two rehabilitation
sessions per week for 6 weeks. All subjects will be
tested at either Oregon Health & Science University
or the VA Portland Health Care System. All rehabili-
tation will take place at Oregon Health & Science
University. Informed written consent will be obtained
from all participants.
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Inclusion and exclusion criteria
Inclusion criteria for mTBI recruitment are 1) a diagno-
sis of mTBI based upon VHA/DoD criteria with persist-
ing symptoms >3 months post injury [44], 2) between
21–50 years old, 3) a score >0 on the DHI, 4) minimal
cognitive impairment; a score between 0 and 8 on the
Short Blessed test for cognitive function [45], and 5)
may or may not have had a loss of consciousness (LOC)
with their initial injury. Inclusion criteria for controls are
between 21–50 years old and no history of mTBI or
brain injury. Exclusion criteria are: 1) have had or
currently have any other injury, medical, substance or
neurological illness that could potentially explain bal-
ance deficits (e.g., CNS disease, stroke, moderate TBI,
lower extremity amputation) 2) meet criteria for moder-
ate to severe substance use disorder within the past
month, as defined by DSM-V, 3) display behavior that
would significantly interfere with validity of data collec-
tion or safety during study, 4) be in significant pain dur-
ing the evaluation (5/10 by patient subjective report), 5)
be a pregnant female (balance considerations), 6) have
past history of peripheral vestibular pathology or ocular
motor deficits, 7) have significant hearing loss that
would interfere with Study 1 no worse than 60 dB HL
(PTA 0.5–3 kHz) and Study 2; hearing loss no worse
than 30 dB HL (PTA 0.5–3 kHz), in better ear, with the
difference in ears being less than 15 dB PTA, or 8) be
unable to abstain for 24 h in advance of testing in the
use medications that might impair their balance.

Study 1: Characterization of balance deficits
Assessment procedures
All people who are eligible per phone screening will
come into the clinic for the informed consent process.
An investigator will verbally explain the consent form,
allow the person ample time to read through the con-
sent form and then will acknowledge consent by signing
the form. All subjects will first read and sign consent
forms. For study 1, 65 mTBI participants and 65 control
subjects will be assessed on a battery of tests designed to
measure vestibular function, sensorimotor integration,
static and dynamic balance, cognition, reaction time,
clinical sensory loss, and self-reported symptoms. All
protocols have been approved by the OHSU Institutional
Review Board.
Participants will complete a novel central sensori-

motor integration test (CSMI test) [22] on a modified
research NeuroCom platform using custom-designed,
low-amplitude (2° and 4° peak-to-peak) pseudorandom
stimuli that apply continuously repeated cycles of
wide bandwidth surface-tilt and/or visual-tilt stimuli
with individual tests lasting ~5 min. The participants’
anteroposterior (AP) body displacement at shoulder
and hip levels, and surface and visual surround

rotation angles will be recorded. Subjects will perform
8 trials (2 amplitudes x 4 test conditions) in one ses-
sion with trials presented in a randomized order and
interspersed with rest breaks (Table 1). Anthropomet-
ric measures will be obtained for the purpose of esti-
mating body mechanics needed for later analysis
(moment of inertia, mass, height of center of mass,
CoM) [22].

Primary outcome measure
The primary outcome measures of central sensorimotor
integration are the parameters derived from a model-
based interpretation of CoM sway evoked by pseudoran-
dom stimuli (Table 2). The procedure for calculating
these parameters is to (1) calculate CoM angular
displacement from experimental measures of hip and
shoulder displacement on each test trial, (2) use Fourier
methods to calculate a frequency response function, FRF
(e.g. Fig. 2d) [46], and (3) adjust parameters of a model
of the balance control system represented by the Fig. 2a
block diagram using a constrained optimization algo-
rithm (Matlab “fmincon” function; The Mathworks, Inc.,
Natick, MA) until the model-derived FRF optimally
matches the experimental FRF (e.g. model-derived FRFs
in Fig. 2d) [22, 47]. This analysis procedure will be
applied to each of the 8 individual tests performed by
each subject. The full set of model parameters are
defined in Table 2.
The parameters include sensory weights that repre-

sent the relative contributions of proprioceptive, visual,
and vestibular sensory information to balance control
such that in each of the 4 test conditions the sum of
weights equals 1. These weights are known to vary with
test conditions that alter the availability (e.g. eyes open
or closed) or reliability (e.g. varying stimulus ampli-
tudes) of sensory information and are affected by sen-
sory abnormalities (22, 24). For condition 1 tests
(surface tilt stimulus with eyes closed) the model fit to
the experimental FRF provides a measure of the pro-
prioceptive contribution (Wprop). With eyes closed,
the visual contribution (Wvis) is zero and therefore the
vestibular contribution is Wvest = 1 – Wprop. Condi-
tion 2 tests also use a surface tilt stimulus but eyes are
open with both visual and vestibular cues providing

Table 1 Aim 1 CSMI test conditions and sensory weight
comparisons

Condition Vision Support
Surface

Visual
Surround

Sensory Weight
Comparisons

1 EC PRS – Wprop vs. Wvest

2 EO PRS Fixed Wprop vs. Wvis + Wvest

3 EO Fixed PRS Wvis vs. Wprop + Wvest

4 EO PRS PRS Wprop + Wvis vs. Wvest

EC eyes closed, EO eyes open, PRS pseudorandom stimulus
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accurate orientation information. The model fit again
provides an estimate of Wprop but now 1 – Wprop =
Wvis +Wvest. Condition 3 tests present a visual tilt
stimulus where the model fit provides a measure of
Wvis and 1 – Wvis =Wprop +Wvest. Finally condition
4 tests simultaneously present the same surface and
visual-tilt stimulus. In this condition the model fit

provides a measure of Wprop +Wvis with Wvest = 1 –
(Wprop +Wvis).
The neural controller parameters Kp and Kd (Table 2)

represent the transformation from an internal sensory
error signal (i.e. deviation from a desired body orienta-
tion) to a corrective ankle torque the moves the body to-
ward a body orientation that reduces the sensory
error. The neural controller parameters (Kp and Kd)
are known to scale with subject anthropometrics [22]
and, therefore, will be normalized prior to performing
across subject comparisons. The balance model also
assumes that a sense of effort contributes to the sen-
sory error signal. This effort sense is represented by a
torque feedback pathway with parameter Kt that is a
scaling factor applied to the mathematical integration

Table 2 Balance control model parameters

Wvis, Wprop, Wvest Sensory weights of visual, proprioceptive,
and vestibular contributions

Kp, Kd Neural controller parameters (sensory-to-
motor transform)

Kt, Gain constant (torque feedback pathway)

td Net feedback time delay

Fig. 2 CSMI methods with example data and analysis. (a) A feedback control model forms the basis for identifying model parameters (Table 2)
that account for experimentally evoked body-in-space (BS) sway, representing angular tilt of the body center-of-mass (CoM), evoked by support
surface (SS) and/or visual surround (VS) rotations. (b) An example of one cycle of a pseudorandom surface-tilt stimulus that evoked the CoM body
sway (averaged across 5 stimulus cycles) shown in (c) for a Control subject and TBI subject. (d) Frequency domain analysis of stimulus/response
data in (b) and (c) yields frequency response functions (FRFs) expressed as gain (ratio of CoM response amplitude to stimulus amplitude) and
phase (timing of response relative to stimulus) measures as a function of frequency components in the pseudorandom stimulus. Parameters of
the model in (a) are calculated by a fit procedure that finds parameters that optimally account for the FRF gain and phase data
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of the corrective ankle torque signal. This feedback path-
way accounts for the low frequency characteristics of the
FRFs that show gain declines and phase advances at fre-
quencies below about 0.1 Hz (Fig. 2d). The time delay par-
ameter td represents all delays in the system including
sensory transduction, neural transmission, central pro-
cessing, and muscle activation. The time delay parameter
accounts for a substantial portion of the increasing FRF
phase lag with increasing frequency.

Sample size
Power analysis for Study 1 was derived from a pilot data-
set of 12 control subjects who participated in CSMI tests
with the goal of estimating the sample size necessary for
a normative reference group. This was defined as the
number of control subjects necessary to see a coefficient
of variation (CV) of less than 10%, a common threshold
for measurement precision, in the CMSI outcome mea-
sures in order to develop a robust reference control
group with a reasonable and acceptable amount of vari-
ability (49). Estimation was done with bootstrapping
techniques using the stiffness control parameter (Kp) of
the CMSI test of the pilot cohort as a sample distribu-
tion. For a considered sample size (ranging from 10 to
100 subjects), 1000 random samples with replacement
were taken from the cohort’s Kp dataset to simulate a
null distribution at that sample size and estimate the
corresponding CV. Based on these permuted samples,
the CV of the Kp parameter is expected to be less than
10% with 65 subjects, giving an adequately representa-
tive reference group. This same sample size of 65 will
allow for a CV of ~6.5% in other CSMI measures such
as visual sensory weighting. Therefore, a cohort of 65
mTBI subjects should be more than sufficient to properly
identify any underlying classification differences arising
from central sensorimotor integration abnormalities.

Secondary outcome measures
Secondary outcome measures of symptomology, neuro-
cognition, static and dynamic balance, and central sen-
sorimotor integration are provided in Table 3.

Static and dynamic balance testing
Subjects will be instrumented with body-worn inertial
sensors during the performance of static and dynamic
balance tests. Five synchronized wireless Opal inertial
sensors (APDM, Inc., Portland, OR) will be affixed to
the participants’ head, sternum, lumbar, left and right
feet using elastic straps. Data will be collected at 128 Hz
and transferred to a laptop for automatic generation of
gait and balance measures by Mobility Lab software [48]
and additional analysis of the raw time-series data.
Specific tests and instrumented measures of static and
dynamic balance are presented in Table 3.

Clinical testing for classification and covariates
To classify mTBI participants as with or without
vestibular dysfunction, standard vestibular testing will be
performed as described in Table 4. Clinical tests to
examine potential covariates of sensory loss will also be
included at the initial visit in Study 1.

Statistical analysis
To determine if objective/novel measures of balance will
better distinguish people with mTBI from control subjects
than clinical measures, we will use logistic regression clas-
sification models. Improvements in classification will be
determined by calculating the area under the curve (AUC)
of the receiver-operator characteristic and then comparing
AUC for each traditional clinical measure with the novel
objective measures. Significance will be assessed using
bootstrapping to determine if the observed differences in
AUC are greater than would be expected by chance at a
level of 0.05.
To determine if a subset of people with mTBI will

have abnormal CSMI test measures, even without per-
ipheral vestibular or ocular motor deficits, we will use
descriptive statistics to characterize the distribution of
CSMI test measures and vestibular/ocular motor scores.
We will define CSMI test measures and vestibular/ocular
motor scores as abnormal if the scores are greater than
2 standard deviations from the mean in controls. We
will then classify mTBI subjects into one of 4 CSMI-
vestibular/ocular motor categories 1) abnormal CSMI –
abnormal vestibular/ocular motor scores, 2) abnormal
CSMI –normal vestibular/ocular motor scores, 3) nor-
mal CSMI –abnormal vestibular/ocular motor scores, 4)
normal CSMI –normal vestibular/ocular motor scores.
To determine if the observed relationship between poorer

static/dynamic balance performance and mTBI is regu-
lated/mediated by central sensorimotor integration, we will
use mediation analysis. Mediation analysis [49] will allow
for the partitioning of the association between mTBI and
chronic imbalance into two parts, the direct relationship of
mTBI on balance impairment as well as the causally medi-
ated effect of mTBI on central sensorimotor integration,
which, in turn is having the actual effect on imbalance.
These varying generative mechanisms of balance deficits
will be assessed by utilizing linear models relating mTBI to
CSMI test measures alongside models of mTBI and CSMI
test measures jointly affecting imbalance using the appor-
tionment methods described by Baron and Kenny [49].

Study 2: Rehabilitation of balance deficit
Assessment procedures
Subjects with mTBI who participate in Study 1 will
be screened for Study 2. An investigator will verbally
explain the consent form and time commitments in-
volved with the rehabilitation, allow the person ample
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time to read through the consent form and then will
acknowledge consent by signing the form. For Study 2, 40
mTBI participants will participate in a 6-week rehabilita-
tion program randomized to either 1) a standard vestibular
focused rehabilitation program or 2) the same standard
vestibular focused rehabilitation program with the addition
of audio biofeedback. Post-rehabilitation assessments will
be conducted one week after the conclusion of the pro-
gram. Retention will be assessed 6 weeks following the
post-rehabilitation session. A flowchart illustrating the
study design is depicted in Fig. 3.

Intervention
Participants will be randomized into either 1) a standard
of care vestibular rehabilitation program or 2) a standard
or care vestibular rehabilitation plus ABF training
program. Rehabilitation will begin approximately 7-10
days after pretest assessment. Both groups will receive
the rehabilitation that includes progressive (3 levels of
difficulty) exercises that target gaze stabilization, vestibu-
lar stimulation, balance and proprioceptive retraining
[50–52] (Table 5). Subjects randomized to the ABF
training, will undergo the same vestibular rehabilitation
program but will wear an ABF device while performing
the rehabilitation exercises. All researchers performing
post-rehabilitation testing will remain blinded to the
randomized group assignment throughout the duration
of the study.

Auditory biofeedback
ABF will be supplied by a lumbar-mounted smartphone
(mHealth Technologies s.r.l., Bologna, Italy). The ABF
system detects AP and mediolateral (ML) linear acceler-
ations near the body’s CoM. The participant wears head-
phones and the ML inclination with respect to gravity is
encoded as a sound in either the right or left ear while
the AP tilt is encoded as changes in pitch as the person
leans forward or backward. When the body is in perfect
equilibrium, the system is quiet. A calibration test is
used to determine optimal balance parameters such that
the auditory feedback increases only when the person
exceeds their baseline sway by 1° or the tilt of the trunk
during gait exceeds an established threshold [42, 53].
Both AP and ML feedback will be supplied to the par-
ticipant during static balance exercises. During dynamic
balance exercises, only ML feedback will be provided.
During balance exercises, participants will be instructed
to utilize the auditory sounds provided by the ABF
system to maintain balance and keep the system quiet
(i.e., minimal deviations from the stable calibration).

Primary and secondary outcome measures
The primary outcome measure is the change between
pre-rehabilitation, post-rehabilitation, and 6-week follow-
up testing of the model-based parameters of the novel
CSMI test (Table 2). Secondary outcome measures are the
changes between pre-rehabilitation, post-rehabilitation,

Table 4 List of clinical sensory and vestibular tests for classification and covariates / comorbidities of primary and secondary outcomes

Domain Tested Test Description Positive Result

Sensory Proprioception test Assess the ability of the participant to detect
the position of the great toe or ankle as it is
moved by a researcher / clinician

Unable to detect changes in position

Visual Vertical Test Requires participant to orient a line to vertical
and quantifies the deviation from vertical

Falls outside control group mean ± 2 SD

Ocular Motor Saccadic Latency Assesses the ability to make a rapid eye
movement, latency would be the time it takes
to initiate a saccade (eye movement) after the
target has moved

Falls outside control group mean ± 2 SD

Gaze Assesses the ability to maintain stable vision
on a fixed target.

Smooth Pursuit Assesses the ability to accurately track/follow a
moving/sinusoidal target with the eyes.

Convergence Assesses the ability to view a close target without
double vision

Vestibular cVEMP Neurophysiological test assessing the function of
the saccule

Falls outside control group mean ± 2 SD

oVEMP Neurophysiological test assessing the function
of the utricle

Caloric Assesses function of the lateral semi-circular
canals and superior branch of the vestibular nerves

Head Impulse Assesses function of semi-circular canals and
vestibular nerve branches, specifically the lateral
canals/superior vestibular nerve
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and 6-week follow up testing of the clinical and objective
balance measures described in Study 1 and in Table 3.
Additional secondary outcome measures from the at-
home inertial sensors will include activity rate and average
turning speed and number of turns.

Sample size
We powered the intervention study to detect improve-
ment in the CSMI test deficit we found in our pilot sub-
jects. Conservatively, 20 subjects will be recruited for
both the experimental treatment and standard of care
groups to provide results that are capable of powering a
more in-depth future clinical trial investigating rehabili-
tation for balance deficits in mTBI patients. The CSMI
test deficits observed in 3 mTBI pilot subjects and 12

healthy controls were used to power the study. Specific-
ally, the CSMI parameter Kp under open eye surface tilt-
ing (t = -2.02, p = 0.065) and visual sensory weight Wvis
under fixed surface visual tilting (t = 2.07, p = 0.060) were
used to calculate sample size based on independent sam-
ple t-tests. Rehabilitation-based differences within the TBI
cohort are not expected to be as extensive as those identi-
fied between mTBI subjects and controls. However, an ef-
fect size at 50% of the magnitude of the difference
observed between mTBI and controls in the preliminary
data (Coehn’s d = 0.748) would still yield 72% power with
α = 0.10 in a repeated measures framework in as little as
10 subjects per group. Conservatively, we will recruit 20
subjects each for the experimental treatment and standard
of care groups to provide results that are capable of
powering a more in-depth future study investigating re-
habilitation for balance deficits in mTBI patients.

Statistical analysis
To determine if ABF intervention improves central sensori-
motor integration, we will build linear regression models to
simultaneously evaluate the change in CSMI measures
reflecting central sensorimotor integration and the effect of
ABF compared to standard of care. Our outcome will be
the change in pre- versus post-rehabilitation program
CSMI measures; using the change (difference) in CSMI
measures will control for the correlation of the repeated
pre- and post- measures within an individual as well as
maximizing the number of covariates we can potentially
add into the regression models. Covariates of interest are
vestibular/ocular motor scores, PTSD, Veteran versus civil-
ian status, age, and gender. In addition, we will determine
whether rehabilitation improved the static and dynamic
balance metrics that were measured at the pre- and post-
rehabilitation testing visits.
To determine if people with CSMI impairment show

sustained improvement in static and dynamic balance
after rehabilitation, even after ABF is discontinued, we will
use linear mixed effects regression modeling which will
include a third time point of interest (6 weeks after the
rehabilitation intervention has stopped). Time will be
treated as a categorical variable in order to evaluate
changes in CSMI scores and balance during specific time
periods, in this case, between the cessation of the inter-
vention and the 6 weeks post-intervention follow-up. We
will explicitly test the significance of a group by time inter-
action to determine if participants in the ABF rehabilita-
tion group showed sustained improvements in outcomes
beyond that experienced by participants with the standard
of care. If applicable, we will then stratify the analysis by
those with abnormal/normal measures of vestibular/ocu-
lar motor function to assess the relationship between ves-
tibular/ocular motor function deficits and sustained
improvement in CSMI score and balance.

Fig. 3 Flowchart illustrating the study design. Study 1 is a cross-sectional
design. Study 2 recruits subjects from Study 1 for a
randomized intervention
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Discussion
The goal of this study is to determine whether persistent
balance and gait deficits following mTBI are attributable
to improper central sensorimotor integration and to
examine the potential for augmented rehabilitation to
improve daily activity levels. In particular, this study is
unique in its investigation of central sensorimotor inte-
gration in people with persistent balance complaints
following mTBI in that confounding covariates such as
vestibular disruption, neurocognition, and physical activ-
ity will be objectively quantified. Additionally, if we find
that the quantitative balance, gait, or novel CSMI mea-
sures have a significantly greater AUC compared to the
clinical measures (BESS, gait speed, SOT) at detecting
patients with chronic mTBI, this will indicate the neces-
sity for objective quantification of gait and balance defi-
cits for mTBI assessment.
If a portion of subjects with chronic balance problems

after mTBI have abnormal CSMI test measures but
normal clinical vestibular testing results, this suggests
that sensory integration processes in the brain can be

impaired following mTBI, even without peripheral
sensory deficits, and that abnormal central sensorimotor
integration plays a key role in persistent abnormal bal-
ance in subjects with normal vestibular function. If a
portion of mTBI subjects have abnormal CSMI test
measures and abnormal clinical vestibular function, the
key mediator for balance problems is less clear and may
be due to the peripheral vestibular dysfunction, abnor-
mal central sensorimotor integration, or inadequate
adaptation of central sensorimotor integration to
account for abnormal sensory information. If we find
that abnormal central sensorimotor integration mediates
abnormal static or dynamic balance, rehabilitation will
need to be focused on improving central sensorimotor
integration to improve balance. If we find that CSMI
scores improve with rehabilitation, we will conclude that
central sensorimotor integration strategies are flexible
and can improve with training. Further, if we find that
central sensorimotor integration and gait and balance
jointly improve with rehabilitation, we will have further
evidence that central sensorimotor integration plays a

Table 5 Rehabilitation protocol

Exercise Vision Surface Time Progression ABF

Static Balance Eyes open Firm 30 s per condition 10 double stance conditions including
tossing a ball, head rotations left-right,
head rotations up-down, head rotations
with smooth pursuit, with gaze stabilization,
and with saccades

Pitch modulated feedback
for AP sway, direction
modulated for ML sway

Eyes closed Firm 30 s per condition 3 double stance conditions including
head rotations left-right, head rotations
up-down

Eyes open Foam 30 s per condition 4 double stance conditions including tossing
a ball, head rotations left-right, head rotations
up-down

Eyes closed Foam 30 s per condition 3 double stance conditions including head
rotations left-right, head rotations up-down

Dynamic Balance
(Tandem Gait)

Eyes open Firm 30 s per condition 4 tandem gait conditions including tossing
a ball, head rotations left-right, head rotations
up-down

Direction modulated
for ML sway

Eyes closed Firm 30 s per condition 1 tandem gait condition

Eyes open Foam 30 s per condition 4 tandem gait conditions including tossing a
ball, head rotations left-right, head rotations
up-down

Eyes closed Foam 30 s per condition 1 tandem gait condition

Dynamic Balance
(Bending down)

Eyes open Firm 30 s per condition 3 different heights Direction modulated
for ML sway

Eyes closed Firm 30 s per condition 3 different heights

Dynamic Balance
(Squatting)

Eyes open Firm 30 s per condition 4 squats including sit-to-stand, lunge, lunge
onto unstable surface, and lunge + twist

Direction modulated
for ML sway

Eyes closed Firm 30 s per condition 4 squats including sit-to-stand, lunge, lunge
onto unstable surface, and lunge + twist

Eyes open Foam 30 s per condition 4 squats including sit-to-stand, lunge, lunge
onto unstable surface, and lunge + twist

Eyes closed Foam 30 s per condition 4 squats including sit-to-stand, lunge, lunge
onto unstable surface, and lunge + twist
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key role in the mediation of gait and balance following
mTBI. If we find a greater improvement in the ABF
group, we will conclude that ABF may facilitate im-
proved rehabilitation. Finally, if we find that people with
central sensorimotor integration impairment maintain
improvements after stopping the use of ABF device, we
will conclude that a recalibration of sensory integration
and/or sensorimotor transformation for balance has
occurred, rather than sensory substitution that requires
active ABF. If we find that sensory strategies can change
with practice and biofeedback, we will conclude that this
targeted approach to balance rehabilitation should be ex-
plored further in a larger, randomized trial. It is possible
that different subclasses based on CSMI measures
respond differently to rehabilitation or ABF-augmented
rehabilitation. In such a case, the results of this study
will provide valuable information for powering an in-
depth future study carefully examining the relationship
between CSMI subclasses and the response to rehabilita-
tion with and without ABF. The results of this study will
further our understanding of the mechanisms underlying
posture and gait dysfunction in individuals with chronic
mTBI and inform future studies about the efficacy of
ABF augmented rehabilitation programs.
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