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Abstract

Background: Amyotrophic lateral sclerosis (ALS) a highly heterogeneous neurodegenerative condition. Accurate
diagnostic, monitoring and prognostic biomarkers are urgently needed both for individualised patient care and
clinical trials. A multimodal magnetic resonance imaging study is presented, where MRI measures of ALS-associated
brain regions are utilised to predict 18-month survival.

Methods: A total of 60 ALS patients and 69 healthy controls were included in this study. 20% of the patient sample
was utilised as an independent validation sample. Surface-based morphometry and diffusion tensor white matter
parameters were used to identify anatomical patterns of neurodegeneration in 80% of the patient sample
compared to healthy controls. Binary logistic ridge regressions were carried out to predict 18-month survival based
on clinical measures alone, MRI features, and a combination of clinical and MRI data. Clinical indices included age at
symptoms onset, site of disease onset, diagnostic delay from first symptom to diagnosis, and physical disability
(ALSFRS-r). MRI features included the average cortical thickness of the precentral and paracentral gyri, the average
fractional anisotropy, radial-, medial-, and axial diffusivity of the superior and inferior corona radiata, internal capsule,
cerebral peduncles and the genu, body and splenium of the corpus callosum.

Results: Clinical data alone had a survival prediction accuracy of 66.67%, with 62.50% sensitivity and 70.84%
specificity. MRI data alone resulted in a prediction accuracy of 77.08%, with 79.16% sensitivity and 75% specificity.
The combination of clinical and MRI measures led to a survival prediction accuracy of 79.17%, with 75% sensitivity
and 83.34% specificity.

Conclusion: Quantitative MRI measures of ALS-specific brain regions enhance survival prediction in ALS and should
be incorporated in future clinical trial designs.

Keywords: Amyotrophic lateral sclerosis, Magnetic resonance imaging, Biomarker, Diffusion tensor imaging, Cortical
thickness, Binary logistic ridge regression, Cross-validation, Independent validation, Prognosis

Background
Amyotrophic lateral sclerosis is a relentlessly progressive
neurodegenerative condition. While the clinical features
of ALS are highly heterogeneous, the overall disease
trajectory and life expectancy from diagnosis is relatively
uniform, making it a template neurodegenerative
condition for the development of diagnostic and prog-
nostic biomarkers [1]. It is widely accepted that a

long pre-symptomatic phase precedes the clinical
manifestation of ALS [2] which may be dominated by
bulbar or spinal symptoms at onset, but progresses to
respiratory failure over time.
Clinical heterogeneity has multiple dimensions in ALS

such as site of onset, coexisting cognitive and behav-
ioural deficits, dominance of upper or lower motor
neurodegeneration, variability in progression rates and
the relatively distinct clinical profile of various ALS
genotypes [3, 4]. All of these variables make accurate in-
dividual prognostication particularly challenging. Clinical
heterogeneity precludes smaller clinical trials [5] as a

* Correspondence: bedep@tcd.ie
Quantitative Neuroimaging Group, Academic Unit of Neurology, Room 5.43,
Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2,
Ireland

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Schuster et al. BMC Neurology  (2017) 17:73 
DOI 10.1186/s12883-017-0854-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12883-017-0854-x&domain=pdf
mailto:bedep@tcd.ie
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


given drug may only be effective in certain ALS pheno-
types. Robust and validated prognostic frameworks
would enhance patient stratification into clinical trials,
and enable the optimised management of individual
patients. The planning and timing of supportive inter-
ventions such as feeding tube insertion, initiation of
non-invasive ventilation, addressing end-of-life decisions
and palliative measures could be guided by accurate
prognostic markers.
Previous studies of ALS have successfully linked specific

demographic and clinical variables to shorter survival; e.g.
older age, bulbar or respiratory onset, recent symptom
onset prior to diagnosis, significant motor impairment,
coexisting executive dysfunction, rapid weight loss [6–9].
Attendance of a multidisciplinary ALS clinic has been
linked to a better prognosis [10].
Magnetic resonance imaging (MRI) has been repeat-

edly proposed as a diagnostic or prognostic biomarker in
ALS. [11, 12] The core imaging features of ALS related
neurodegeneration are well described: degeneration of
the precentral gyrus [13, 14], corpus callosum and corti-
cospinal tract [15, 16]. Despite numerous descriptive im-
aging studies in ALS, few studies have successfully
translated group-level findings to aid the interpretation
of individual data sets. While imaging measures were re-
peatedly proposed as potential diagnostic biomarkers in
ALS, imaging parameters of single anatomical structures
led to relatively poor diagnostic classification accuracy
[17–20]. Imaging measures in ALS have also been ex-
plored as prognostic indicators. Neuronal integrity of
the motor cortex has been directly linked to survival

[21] and corticospinal tract fractional anisotropy (FA)
was used to predict 3-year survival [22].
The objective of this study is to develop and test an

objective prognostic tool in ALS to predict 18-month
survival based on quantitative MRI data. We hypothe-
sised that structural MRI measures enhance prediction
accuracy compared to clinical variables alone.

Methods
Methods overview
Patients were divided into a “training sample” and an
“independent validation sample”, to develop and test a
binary logistic ridge regression model predicting 18-
month survival (Fig. 1). Core clinical parameters relating
to survival were selected based on a comprehensive litera-
ture review. ALS-specific, MRI measures were selected
based on group comparisons between the patients of the
training cohort and healthy controls. Survival prediction
accuracy was evaluated based on (a) clinical indices alone,
(b) MRI measures alone and (c) based on both clinical
and MRI measures.

Participants
Data were acquired prospectively as part of the biomarker
initiative of the Academic Unit of Neurology in Trinity
College. Written informed consent was provided by every
participant in accordance to the Medical Ethics approval
of the research project (Ethics (Medical Research) Com-
mittee - Beaumont Hospital, Dublin, Ireland). Inclusion
criteria included a diagnosis of definite or probable ALS
according to the revised El Escorial criteria [23] and the

Fig. 1 Overview of methods
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ability to lie supine in the MRI scanner for 45 min. Exclu-
sion criteria included unexpected radiological findings,
coexisting psychiatric conditions, previous traumatic head
injury, poorly controlled diabetes, hydrocephalus, prior
haemorrhagic or ischaemic stroke. Patients with comorbid
frontotemporal dementia according to the Rascovsky
Criteria were also excluded because of the confounding
imaging changes associated with this phenotype [24].
Based on the above criteria 69 consecutive ALS pa-

tients were prospectively enrolled and scanned between
January 2011 and January 2015. Out of the 69 patients 3
patients could not tolerate the duration of the MRI
protocol, and unexpected imaging findings were identi-
fied in 3 patients; falcine meningioma, gliotic cortical
changes secondary to an old head injury, and a small old
parietal stroke. Survival data was reviewed based on the
national ALS-register in June 2016. Out of the 63 pa-
tients included, 33 were alive more than 18 months after
their scan and 30 patients passed away within 18 months.
To provide equally sized study groups of short and long
survivors, 30 patients were randomly selected out of the
33 patients who were alive 18 months after their scans.
80% of the patients were randomly allocated to the train-
ing sample and 20% to the validation sample. In order to
highlight the ALS specific pathology, the training sample
was compared to an age- and gender matched group of
69 healthy controls. [25] The demographic and clinical
profile of the participants in presented in Table 1.

Imaging data acquisition
MR data were acquired on a 3 Tesla Philips Achieva
MRI platform with a maximum gradient strength of
80mT/m using an 8-channel receive-only head coil.
T1-weighted images were obtained using a three-

dimensional inversion recovery prepared spoiled gradi-
ent recalled echo (IR-SPGR) sequence with a field of
new (FOV) of 256 × 256 × 160 mm, spatial reso-
lution = 1 mm3, TR/TE = 8.5/3.9 ms,TI = 1060 ms, flip
angle = 8°, SENSE factor = 1.5. Diffusion Tensor Images
(DTI) were acquired using a spin-echo planar imaging (SE-
EPI) sequence with a 32-direction Stejskal-Tanner diffusion
encoding scheme: FOV = 245 × 245 × 150 mm, spatial
resolution = .5 mm3, 60 slices with no interslice gap, TR/
TE = 7639 / 59 ms, SENSE factor = 2.5, b-values =0,
1100 s/mm2, with SPIR fat suppression and dynamic
stabilisation in an acquisition time of 5 min 41 s.

Imaging data analyses
MRI pre-processing
White matter (WM) analysis The pre-processing of the
diffusion weighted images included eddy current cor-
rections, motion corrections, and brain-tissue extrac-
tion in FSL [26]. A diffusion tensor model was fitted
at each voxel, generating maps of fractional anisot-
ropy (FA), mean diffusivity (MD), axial diffusivity
(AD), and radial diffusivity (RD). Each dataset was
aligned to the FMRIB58a_FA standard-space images.
Next, a mean FA image was created. Each subject’s
aligned FA data was then projected onto the FMRI-
B58a_FA standard-space skeleton and the resulting
data fed into voxel-wise cross-subject statistics.

Cortical thickness (CT) analysis Cortical thickness was
evaluated using the FreeSurfer imaging analysis suite
(http://surfer.nmr.mgh.harvard.edu/; version 5.3.0),
which has been both validated using histological [27]
and manual measurements [28]. The automated processing
pipeline consists of skull-stripping, registration, intensity

Table 1 Clinical and demographic data of study participants

Training Sample Validation Sample

Healthy controls ALS patients surviving ALS patients surviving

p-value* < 18 months > 18 months p-value < 18 months > 18 months p-value

n 69 24 24 6 6

Gender (male/ female) 34/35 P = 0.22 17/7 13/11 P = .37 3/3 2/4 P = 1

Handedness (right/left) 64/5 P = .55 23/1 20/4 P = .35 5/1 5/1 P = 1

Age, years (means, SD**) 59.97 (9.9) P = .17 63.18 (8) 61.76 (10.73) P = .60 63.96 (8.03) 55.09 (8.82) P = .09

Site of onset (bulbar/spinal) 8/16 10/14 P = .76 3/3 2/4 P = 1

Diagnostic delay, years (mean, SD) 1.2 (0.81) 1.05 (0.75) P = .51 1.28 (1.1) 0.88 (0.3) P = .43

Disease duration from symptom onset until
scan, years (mean, SD)

2.17 (1.01) 2.32 (1.34) P = .67 1.94 (1.44) 1.85 (0.54) P = .89

ALSFRS-r (mean, SD) 34.48 (6.84) 37.38 (6.21) P = .12 34.5 (8.34) 39.17 (4.17) P = .25

King’s College Staging (1/ 2/ 3/ 4/ unavailable) 4/5/3/7/5 4/9/5/4/2 0/1/2/2/1 2/2/1/1/0

MITOS Staging (0 /1/ 2/ 3/ unavailable) 10/8/1/0/5 19/2/0/1/2 3/1/1/0/1 6/0/0/0/0

Survival from scan, years (mean, SD) 0.94 (0.32) 2.26 (1.11) P < .01 0.92 (0.26) 2.62 (1.32)** P < .05

*healthy controls were compared to the training sample of 48 patients. **SD standard deviation
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normalization, Talairach transformation, tissue seg-
mentation, and surface parcellation. Tissue segmenta-
tion determines the white/grey matter interface
(white matter surface) and grey matter/cerebrospinal
boundary (pial surface). The result of this process
was individually reviewed, and if errors were detected
the segmentation step was repeated. Cortical thick-
ness has been defined as the distance (vertex) from
the white matter surface to the nearest point on the
pial surface.

Feature selection
In order to identify ALS-specific pathological brain re-
gions, patients of the training sample were compared to
healthy controls using age as a nuisance variable. The
significance level for the group comparisons were set
to p < 0.01 corrected using family-wise error (FWE).
Figure 2. Based on these analyses, the following core
white matter regions were selected as discriminatory
features for the binary ridge regression: the superior
corona radiata, inferior corona radiata, anterior and
posterior limbs of the internal capsule, cerebral pe-
duncles (mesencephalic crus) and the genu, body and
splenium of the corpus callosum. Figure 3. These re-
gions were defined based on the above patients-
versus-controls contrast using the JHU DTI-based
white-matter atlas labels. The average value of each
DTI index (i.e. FA, RD, MD, AD) was extracted from
each white matter region.
The comparative cortical thickness analyses were sig-

nificant at p < .05 corrected for multiple comparisons
using false discovery rate (FDR). Figure 4. Cortical fea-
tures were selected based on these comparisons and
expanded to include the entire precentral gyrus and the
paracentral gyrus based on available literature [29, 30].
The Desikan-Killiany atlas [31] was utilised to define the
cortical regions and the average cortical thickness was
extracted from both regions.
For all variables, values in left and right hemisphere were

averaged. The pre-processing steps of the independent
validation sample were analogous to the pre-processing
pipeline of the training sample.

Reducing age-related variability
The effect of aging on MRI measures is well estab-
lished and it has been shown that classification accur-
acy may be improved by removing this nuisance
variable. The confounding effect of age is particularly
important in ALS which affects a fairly a wide age
range. From an imaging perspective, a young patient
with severe physical disability may exhibition similar
brain changes to older patients with less advanced
disease. Moreover, age in ALS is considered a prog-
nostic factor. [8, 32] To account for age-related vari-
ability the method of Koikkalainen et al. was
implemented [33]. A linear regression model was fit-
ted to the distribution of the values of each feature of
the control group using age as independent variable.
Based on this equation, we estimated the predicted
value for each feature for each individual subject.
These values were then subtracted from the measured
values resulting in age-corrected measurements for
each feature.

Fig. 2 White matter analyses. Group comparisons between ALS patients and controls. The significance level is set to p < .01 FWE

Fig. 3 MRI features included in the regression analyses. Top: Cortical
thickness. Blue: precentral gyrus, Light green: paracentral gyrus. Only
the right hemisphere is displayed. Bottom: White matter. Green:
superior corona radiata, grey: corona radiata, orange: posterior limb
of the internal capsule, lilac: anterior limb of the internal capsule,
rose: cerebral peduncle, yellow: genu of corpus callosum, red: body
of the corpus callosum, brown: splenium of the corpus callosum
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Statistical analyses
Three binary logistic ridge regressions were fitted using
(a) clinical indices alone (b) MRI features alone (c) and
both clinical and MRI parameters. Clinical features in-
cluded age at disease onset, site of disease onset (bulbar/
spinal), diagnostic delay (time interval from symptom
onset to diagnosis), and ALSFRS-r at the time of the
scan. Table 2. MRI features corrected for age-related
variability consisted of the average cortical thickness of
the precentral gyrus, the average FA, RD, MD and AD of
the superior corona radiata, inferior corona radiata,
anterior and posterior limbs of the internal capsule,
cerebral peduncles and the genu, body and splenium of
the corpus callosum. Figure 3. The outcome variable
was the probability of surviving less than 18 months.
The statistical software R [34] and the package ‘glmnet’
(α = 0) [35] was utilised to carry out the logistic ridge
regression. The tuning parameter λ was selected based
on ten-folded cross-validation which was repeated 100
times. The model with the smallest misclassification

Table 2 List of clinical and MRI features

Clinical indices MRI features

• Age at disease onset Cortical thickness

• Site of disease onset • Precentral gyri

• Diagnostic delay • Paracentral gyri

• Disease severity ALSFRS-r White matter
• Superior corona radiata

• Inferior corona radiata

• Anterior limbs of the internal capsule

• Posterior limbs of the internal capsule

• Cerebral peduncles

• Genu of the corpus callosum

• Body of the corpus callosum

• Splenium of the corpus callosum

Fig. 5 Patterns of white matter pathology in short and long
survivors. Blue colour indicates white matter degeneration in ‘short
survivals’ (<18 months) in comparison to controls, and red colour
indicates white matter degeneration in ‘long survivors’ (>18 months)
in comparison to controls at p < 0.05 (FWE) correcting for age

Fig. 6 Patterns of cortical pathology in short and long survivors.
Extensive, multifocal grey matter pathology is identified in ‘short
survivals’ (<18 months) compared to controls at p < 0.05 (FDR)
which is not captured at this statistical threshold in
long-survivors. (>18 months)

Fig. 4 Cortical thickness analyses. Group comparison between ALS
patients and controls. The significance level is set to p < .05 FDR
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error averaged over the 100 estimations was selected.
Subsequently, the ridge regression algorithm was used to
estimate the probability of each participant in the valid-
ation sample to belong to the group surviving less than
18 months after the brain scan.

Results
Group comparisons
The comparison of ALS patients in the training sample
and controls highlighted ALS-specific patterns of neuro-
degeneration, i.e. cortical thinning of the precentral and
paracentral gyri (Fig. 4) and white matter degeneration

of all segments of the corticospinal tract and corpus
callosum. (Figure 2). The direct comparison of patients
surviving more than 18 months and those surviving less
than 18 months, did not reach statistical significance
with family-wise error corrections. However, patients
with shorter survival have demonstrated significantly
more widespread cortical and white matter changes in
comparison to controls than those surviving longer
Figs. 5 and 6.
Figure 7 shows the probability of each patient to

survive less than 18 months based on (a) clinical param-
eters, (b) MRI measures, and (c) both clinical and MRI

Fig. 7 The predicted probability of surviving less than 18 months based on clinical variables (a) MRI variables (b) Clinical and MRI variables (c).
Red: patients who have survived less than 18 months, Black: patients who have survived more than 18 months after their MRI scans
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indices. Using a cut-off score of 50%, the accuracy, sensi-
tivity and specificity of prognostic classification in
presented in Table 3. The coefficient estimates for each
regression are presented in Additional file 1: Table S1.
Analysis of misclassification revealed that among

the clinical variables the total ALSFRS-R showed a
significant difference between correctly classified and

misclassified patients. When predicting a survival of
less than 18 months, false negative patients had a
higher ALSFRS-R in comparison to false positives who
had lower ALSFRS-R scores (average ALSFRS-R for
True Positive =30.93 (SD = 6.39), False Negative =40.11
(SD = 2.03), p < .01). Additional file 1: Table S2-13.

Discussion
The presented study explores the role of MRI measures
as prognostic biomarkers in ALS. While diagnostic and
monitoring biomarkers have been extensively investi-
gated in ALS, there is a scarcity of prognostic studies.
One of the key finding of the study is the more wide-
spread white and grey matter degeneration in ‘short-sur-
vivors’ compared to ‘long-survivors’. Figures 5 and 6.
Based on these results, we aimed to systematically evalu-
ate the value of structural MRI measures of disease-
defining brain regions and clinical indices in predicting
the probability of 18-month survival.
Based on the combination of structural brain measures

and clinical characteristics, mortality within 18-months
was predicted with relatively high accuracy; 79.17%.
Moreover, 83.3% of patients were correctly identified as
surviving for longer than 18 months following their
brain scan, and 75% of the sample was correctly identi-
fied as surviving less than 18-months. Applying the re-
gression algorithm to an independent validation sample
further supports the validity of these findings. Despite
the relatively small sample size of the validation cohort,
the algorithm reached 75% accuracy. 83.34% of patients
were correctly identified as surviving more than 18-
months and 66.67% of patients were correctly identified
as surviving less than 18 months. Based on MRI mea-
sures alone, the accuracy and sensitivity of the classifica-
tion was similar, but the patients surviving more than
18 months were less likely to be identified correctly.
Using clinical and demographic measures alone, with-

out MRI indices, prediction accuracy was considerably
lower (66.67%). Similarly, the sensitivity and specificity
profile of these predictions were inferior to the ones also
incorporating MRI measures. These findings underscore
the benefit of MRI measures of ALS-associated brain
regions in predicting 18-months survival. (Table 3.)
Evaluating misclassified patients based on clinical fea-

tures alone, the group incorrectly classified surviving less
than 18 months was significantly less physically impaired.
They had a higher score of the ALSFRS-R. In contrast,
patients misclassified as surviving longer than 18 months,
had significantly longer disease duration. Adding MRI
measure, there was no difference found between mis-
classified patients, again emphasizing the benefit of this
additional information.
Previous studies have linked MRI measures to survival.

Two-year survival was predicted using motor cortex

Table 3 Classification outcomes using a 50% cut-off probability

A, Classification based on clinical characteristics alone

Training sample

Predicted class Survival
<18 months

Survival
>18 months

Sensitivity 62.50%

True Class Survival
<18 months

15 7 Specificity 70.84%

Survival
>18 months

9 17 Accuracy 66.67%

Validation sample

Predicted class Survival
<18 months

Survival
>18 months

Sensitivity 66.67%

True Class Survival
<18 months

4 1 Specificity 83.34%

Survival
>18 months

2 5 Accuracy 75.00%

B, Classification based on MRI measures alone

Training sample

Predicted class Survival
<18 months

Survival
>18 months

Sensitivity 79.16%

True Class Survival
<18 months

19 6 Specificity 75.00%

Survival
>18 months

5 18 Accuracy 77.08%

Validation sample

Predicted class Survival
<18 months

Survival
>18 months

Sensitivity 66.70%

True Class Survival
<18 months

4 3 Specificity 50.00%

Survival
>18 months

2 3 Accuracy 58.33%

C, Classification based on clinical and MRI measures

Training sample

Predicted class Survival
<18 months

Survival
>18 months

Sensitivity 75.00%

True Class Survival
<18 months

18 4 Specificity 83.34%

Survival
>18 months

6 20 Accuracy 79.17%

Validation sample

Predicted class Survival
<18 months

Survival
>18 months

Sensitivity 66.67%

True ClassSurvival
<18 months

4 1 Specificity 83.34%

Survival >18 months 2 5 Accuracy 75.00%

Schuster et al. BMC Neurology  (2017) 17:73 Page 7 of 10



spectroscopy with a sensitivity of 67% and a specificity of
83% [21] and corticospinal tract diffusivity changes were
utilised to predict three-year survival with a specificity of
61.5% and accuracy of 71.0%. [22] In contrast to previous
studies, we present a multi-modal approach, assessing
cortical thickness alterations in addition to the four most
commonly used indices of white matter degeneration.
Additionally, we test the generalisability of our classifica-
tion method in an independent validation sample.
Accurate prognostic markers have a role in clinical

management as well as in clinical trials. In the absence of
effective disease-modifying therapies, the optimal timing
of supportive measures [36], end-of-life decisions [37],
palliative interventions [38] is particularly important in
ALS. While ALS patients are eager to participate in clin-
ical trials in all stages of the disease, it may be desirable to
enrol relatively homogenous patient cohorts soon after
their diagnosis, when limited neurodegenerative change
has taken place. [2, 5] It is frequently the case however
that heterogeneous patient cohorts are enrolled in clinical
trials, encompassing diverse phenotypes in order to rap-
idly meet the targeted sample size [39]. In the era of preci-
sion medicine, therapeutic strategies and clinical trial
designs should be tailored to specific phenotypes [40, 41]
and disease stages [39]. For example, stem cells therapy is
regarded to be less successful in bulbar onset ALS pa-
tients, and patients with advanced disease [42]. Clinical
trials of specific phenotypes or homogenous cohorts may
have other advantages, such as the inclusion of patients
who are likely to progress at a relatively uniform rate. It
has been proposed that the inclusion of patients with
rapid progression rates may shorten clinical trials [43].
Using objective, validated and observer-independent

prognostic markers, such as MRI measures, may be
helpful for patient stratification into clinical trials. It is
also important that study end-points, such as survival
are independent from demographic factors. [41].

Limitations and future directions
Our study outlines a prediction method based on single-
time point MRI data, which is a snapshot of in vivo
pathology at specific moment in the patient’s disease
trajectory.
Survival prediction may be more accurate if multiple

time-points are included and longitudinal change over
time is considered. [2] Moreover, the inclusion of other
disease-specific anatomical regions, such as basal ganglia
[44, 45], spinal cord [46, 47], cerebellar [48] or electro-
physiological measures [49] may improve prognostic
categorisation further. As only patients scanned at least
18 months ago were included, the sample size of the study
is relatively limited and 20% of the patients were randomly
allocated to the validation sample to demonstrate the
generalizability of the methods. The present pilot study

outlines a proposed prognostic algorithm which should
ideally be replicated in larger cohorts or data pooled from
multiple centres. Other future directions include assess-
ment of two-year survival, or other clinical milestones,
such as introduction of non-invasive ventilation, walking
aids, feeding tubes etc. In this study, the cognitive and
behavioural profile of the patients were not considered,
despite evidence that executive dysfunction is associated
with shorter survival [7] and compliance with assistive
devices. [36] We also acknowledge that, with the current
MR technology, the additional prognostic value of MRI
indices is limited, and may not be substantial enough to
be incorporated in clinical trial designs.

Conclusions
The combination of objective MRI measures and key
clinical indices enable the accurate prediction of 18-
month survival in ALS. Accurate, objective and validated
prognostic markers are urgently required in ALS, and
have implications both for clinical trial designs and
individualised patient care.
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Additional file 1: Table S1. Coefficients estimates of each logistic ridge
regression.Table S2. Clinical features. Demographic and clinical data of
correctly and misclassified patients surviving less than 18 months of the
training sample using a cut-off of 50% probability. Table S3. Clinical
features. Demographic and clinical data of correctly and misclassified
patients surviving >18 months of the training sample using a cut-off of 50%
probability. Table S4. Clinical features. Demographic and clinical data of
correctly and misclassified patients surviving <18 months of the validation
sample using a cut-off of 50% probability. Table S5. Clinical features.
Demographic and clinical data of correctly and misclassified patients
surviving >18 months of the validation sample using a cut-off of 50%
probability. Table S6. MRI features. Demographic and clinical data of
correctly and misclassified patients surviving <18 months of the training
sample using a cut-off of 50% probability. Table S7. MRI features.
Demographic and clinical data of correctly and misclassified patients
surviving >18 months of the training sample using a cut-off of
50% probability. Table S8. MRI features. Demographic and clinical data
of correctly and misclassified patients surviving <18 months of the
validation sample using a cut-off of 50% probability. Table S9. MRI features.
Demographic and clinical data of correctly and misclassified patients
surviving >18 months of the validation sample using a cut-off of 50%
probability. Table S10. Clinical and MRI features. Demographic and clinical
data of correctly and misclassified patients surviving <18 months of the
training sample using a cut-off of 50% probability. Table S11. Clinical and
MRI features. Demographic and clinical data of correctly and misclassified
patients surviving >18 months of the training sample using a cut-off of 50%
probability. Table S12. Clinical and MRI features. Demographic and clinical
data of correctly and misclassified patients surviving <18 months of the
validation sample using a cut-off of 50% probability. Table S13. Clinical and
MRI features. Demographic and clinical data of correctly and
misclassified patients surviving >18 months of the validation sample
using a cut-off of 50% probability. (DOCX 39 kb)
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