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Abstract

Background: Delayed post-hypoxic leukoencephalopathy (DPHL) is a demyelinating syndrome characterized by
neurological relapse after an initial recovery from hypoxic brain injury. We describe a patient with impaired
consciousness following DPHL, concurrent with injury of the ascending reticular activating system (ARAS) shown

using diffusion tensor tractography (DTT).

Case presentation: A 50-year-old male patient was in a drowsy mental state after exposure to carbon monoxide
(CO) for about ten hours. About a day after the CO exposure, his mental state recovered to an alert condition.
However, his consciousness deteriorated to drowsy 24 days after the exposure and worsened to a semi-coma state
at 26 days after onset. When he started rehabilitation six weeks after the CO exposure, he had impaired
consciousness, with a Glasgow Coma Scale score of 8 and a Coma Recovery Scale-Revised score of 8. On 6-week
DTT, decreased neural connectivity of the upper ARAS between the intralaminar thalamic nucleus and the cerebral
cortex was observed in both frontal cortices, basal forebrains, basal ganglia and thalami. The lower dorsal ARAS was
not reconstructed on the right side, and was thin on the left side. The lower ventral ARAS was not reconstructed

on either side.

Conclusions: Using DTT, we demonstrated injury of the ARAS in a patient with impaired consciousness following
DPHL. Our result suggests that injury of the ARAS is a plausible pathogenetic mechanism of impaired consciousness

in patients with DPHL.
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Background

Delayed post-hypoxic leukoencephalopathy (DPHL), a
rare clinical condition, is a demyelinating syndrome
characterized by neurological relapse after an initial re-
covery from hypoxic brain injury caused by carbon mon-
oxide (CO) poisoning, overdose of drug, and myocardial
infarction [1-3]. The majority of DPHL cases are associ-
ated with CO poisoning [4]. Lee and Marsden divided
DPHL into two general clinical categories: parkinsonism
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(masked face, rigidity, tremor, dystonic posturing, agita-
tion) and akinetic mutism (apathetic and developed
functional bowel and minimal primitive responses to
pain) [5-13]. However, very little is known about im-
paired consciousness following DPHL.

Hypoxic brain injury predominantly involves the gray
matter. MRI is recognized as the most sensitive and
common imaging tool for hypoxic brain injury [14]. In
contrast, DPHL predominantly involves the white mat-
ter. Many studies have reported abnormality of the white
matter including basal ganglia following DPHL using
neuroimaging tools such as conventional MRI, diffusion
weight imaging, and MR spectroscopy [5—13].
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Recently developed diffusion tensor tractography (DTT),
derived from diffusion tensor imaging (DTI), has the
unique capability to estimate the neural tract in the white
matter and is able to find the subtle or invisible neural in-
jury by detection of characteristics of water diffusion [15].
Injury of the ascending reticular activating system (ARAS),
which is responsible for consciousness, has been reported
in patients with hypoxic brain injury [16, 17]. However, no
study of injury of the ARAS in patients with DPHL has
been reported.

In this study, using DTT, we report on a patient with
impaired consciousness concurrent with injury of the
ARAS following DPHL.

Case presentation

A 50-year-old male patient showed drowsy mental state
after exposure to carbon monoxide released from a coal
briquette stove for about ten hours while he was sleeping.
He underwent conservative management at a local hospital
and his drowsy mental state recovered to an alert state
approximately one day later without any neurological
sequelae. However, he was transferred to the nephrology
department of a university hospital for management of an
acute kidney injury due to rhabdomyolysis ten days later.
At that time, his Glasgow Coma Scale (GCS) and mini-
mental state examination were full scores (15 and 30 scores,
respectively) and results of blood test were as follows: creat-
ine phosphokinase - 3273 IU/L (57 ~ 374), blood urea
nitrogen - 133 mg/dL (8 ~ 23), creatinine - 5.67 mg/dL
(0.6 ~ 1.5), aspartate aminotransferase - 53 IU/L (10 ~ 35),
and alanine aminotransferase - 2 IU/L (0 ~ 40). Deep sec-
ond degree contact burn wound was observed on his left
buttock and he was diagnosed as a rhabdomyolysis which
was caused by the contact burn. We assumed that the
contact burn was occurred by the contact with the
briquette stove during sleeping because there was no
observer. At 16 days after the CO exposure, he began
to show mild dysarthria and myoclonus on the right
fingers. He developed clumsy movement 22 days after
onset. His consciousness deteriorated to a drowsy state
24 days after onset and worsened to a semi-coma state
at 26 days after onset. Brain MR images at three weeks
after onset showed lesions in both basal ganglia (Fig. 1a).
Six weeks after the CO poisoning, he was transferred to
the rehabilitation department of the same university
hospital. The patient showed impaired consciousness,
with a Glasgow Coma Scale score of 8 (eye opening: 4,
best verbal response: 1, and best motor response: 3)
and a Coma Recovery Scale-Revised score of 8 (audi-
tory function: 0, visual function: 3, motor function: 2,
verbal function: 1, communication: 0, and arousal: 2)
[18, 19]. The patient’s wife provided signed, informed
consent, and the study protocol was approved by our
Institutional Review Board.
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Magnetic resonance imaging and diffusion tensor
imaging

Imaging parameters for T2-weighted MRI were as
follows: acquisition matrix = 265 x 224, field of
view = 210 x 210 mm?, repetition time = 4224.1 ms,
echo time = 100 ms, number of excitations = 2, and
a slice thickness of 5 mm with a gap of 2.2 mm.
DTI data were acquired at six weeks after onset
using a six-channel head coil on a 1.5 T Philips
Gyroscan Intera with single-shot echo-planar im-
aging. Imaging parameters were as follows: acqui-

sition matrix = 96 x 96; reconstructed to
matrix = 192 x 192; field of view = 240 x 240 mm?
repetition time = 10,398 ms; echo time = 72 ms;

echo-planar imaging factor = 59; b = 1000s/mm?
and a slice thickness = 2.5 mm. Affine multi-scale
two-dimensional registration at the Oxford Centre
for Functional Magnetic Resonance Imaging of Brain
(FMRIB) Software Library was used to correct head
motion effect and image distortion. Fiber tracking
used FMRIB Diffusion (5000 streamline samples,
0.5 mm step lengths, curvature thresholds = 0.2), a
probabilistic tractography method [20]. Three por-
tions of the ARAS were reconstructed by selection
of fibers passing through region of interest (ROI) as
follows [21-23]: the upper ARAS, in which the
neural connectivity of the intralaminar thalamic nu-
cleus (ILN, ROI 1) to the cerebral cortex was ana-
lyzed, the dorsal lower ARAS, between the pontine
reticular formation (RF, ROI 1) and the ILN (ROI 2),
and the ventral lower ARAS, between the pontine
RF (ROI 1) and the hypothalamus (ROI 2). Out of
5000 samples generated from the seed voxel, results
for fiber tracking were applied at a threshold of two
streamlines for the dorsal and ventral lower ARAS
and 10 streamlines for the upper ARAS.

On 6-week DTT, decreased neural connectivity of the
upper ARAS between the ILN and the cerebral cortex
was observed in both frontal cortices, basal forebrains,
basal ganglia and thalami (Fig. 1). The dorsal lower
ARAS between the pontine RF and the ILN was not re-
constructed on the right side and thin on the left side.
The ventral lower ARAS between the pontine RF and
the hypothalamus was not reconstructed on either side.

Discussion and conclusions

In the current study, three portions of the ARAS (the
dorsal lower ARAS, ventral lower ARAS and upper
ARAS) in a patient with impaired consciousness follow-
ing DPHL caused by CO poisoning were evaluated using
DTT. We found that these three portions of the ARAS
were injured in both hemispheres: the upper ARAS —
decreased neural connectivity to both frontal cortexes,
basal forebrains, basal ganglia and thalami, the dorsal
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(53 year-old male). ARAS: ascending reticular activation system

Fig. 1 a Brain MR images at three weeks after onset show lesions in both basal ganglia (yellow arrows). b Results of diffusion tensor
tractography (DTT) for the ascending reticular activation system (ARAS). On 6-week DTT, decreased neural connectivity of the upper ARAS
between the intralaminar thalamic nucleus and the cerebral cortex is observed in both frontal cortices, basal forebrains, basal ganglia and
thalami (red arrows). The dorsal lower ARAS between the pontine reticular formation and the intralaminar thalamic nucleus is not
reconstructed on the right side (purple arrow) and thinning on the left side (green arrow). The ventral lower ARAS between the pontine
reticular formation and the hypothalamus is not reconstructed on both sides (blue arrows). Results of DTT for the ARAS in a normal subject

lower ARAS — non-reconstruction in the right side and
narrowing in the left side and the ventral lower ARAS —
non-reconstruction in both sides. We believe that the
impaired consciousness in this patient was ascribed to
the injury of the three portions of the ARAS.

Many studies have reported abnormality of the white
matter including basal ganglia (caudate nucleus, putamen,
and globus pallidus) in patients with DPHL using various
neuroimaging tools including conventional MRI [5-13].
Neurological manifestations were observed as follows: 1)
cognitive impairments - confusion, disorientation, execu-
tive dysfunction, attention deficit, and akinetic mutism 2)
motor symptoms - spasticity, hyper-reflexia, bradykinesia,
rigidity, tremor, gait disturbance, dystonia 3) hallucina-
tions, and 4) dysautonomia [5-13]. Regarding DTI, as far
as we are aware, only one study was reported on patients
with DPHL [24]. In 2008, Kenshi et al. demonstrated ex-
tensive white matter injury using DTI parameters

(fractional anisotropy and mean diffusivity) in two patients
with carbon monoxide intoxication (patient 1: frontal and
parietal regions, globus pallidus, and corpus callosum and
patient 2: globus pallidus) and showed neurological mani-
festations as follows: 1) patient 1 - akinetic mutism, dis-
orientation, gait disturbance and 2) patient 2 - akinetic
mutism [24]. To the best of our knowledge, this is the first
DTT study to demonstrate injury of the ARAS in a patient
with DPHL.

In conclusion, using DTT, we demonstrated injury of
the ARAS in a patient with impaired consciousness
following DPHL. Our result suggests injury of the ARAS
is a plausible pathogenetic mechanism of impaired con-
sciousness in patients with DPHL. However, because it
is a single case report, this study is limited. In addition,
several limitations of this study should be considered.
First, use of DTT could lead to both false positive and
negative results due to multiple fiber orientations in a
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voxel [25]. Second, we could not provide correlation be-
tween cognitive function and DTI anatomical site. Third,
based on the blood test, we could not completely ruled
out whether it affected neurogical status of the patient.
Therefore, we suggest that further studies including
large numbers of patients and overcoming limitations of
this study should be encouraged.
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