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Abstract

Background: Alzheimer’s disease (AD) is an important, progressive neurodegenerative disease, with a complex
genetic architecture. A key goal of biomedical research is to seek out disease risk genes, and to elucidate the
function of these risk genes in the development of disease. For this purpose, expanding the AD-associated
gene set is necessary. In past research, the prediction methods for AD related genes has been limited in their
exploration of the target genome regions. We here present a genome-wide method for AD candidate genes
predictions.

Methods: We present a machine learning approach (SVM), based upon integrating gene expression data with
human brain-specific gene network data, to discover the full spectrum of AD genes across the whole genome.

Results: We classified AD candidate genes with an accuracy and the area under the receiver operating characteristic
(ROC) curve of 84.56% and 94%. Our approach provides a supplement for the spectrum of AD-associated genes
extracted from more than 20,000 genes in a genome wide scale.

Conclusions: In this study, we have elucidated the whole-genome spectrum of AD, using a machine learning
approach. Through this method, we expect for the candidate gene catalogue to provide a more comprehensive
annotation of AD for researchers.
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Background
Alzheimer’s disease (AD) is a widespread progressive neu-
rodegenerative disease type, characterized by impaired
memory, cognitive functioning, and changed behavior [1].
Past genetic research implicates b-amyloid peptide accu-
mulation and deposition, as well as tau protein pathology,
selective neuronal death, synaptic and neurotransmitter
loss, and neuroinflammation in Alzheimer’s disease patho-
genesis [2]. However, the standard of research into AD is
Genome Wide Association Studies (GWAS) with pedigree
analysis, rather than candidate pathway exploration.
Therefore, the understanding of AD is limited by sample

size and quality, making it a challenge to have overall
insight into AD. Moreover, AD heritability is estimated at
~60–80% [3], while the genetic architecture of AD is im-
perfectly characterized.
Complex human diseases such as AD are caused by the

composite action of multiple, disease-related genes. At
present, AD has at least 4 well-known disease-causing
genes: the amyloid precursor protein (APP) gene and the
Presenilin (PSEN1/PSEN2) genes for familial AD, and apo-
lipoprotein E (APOE) ε4 for sporadic AD [1]. A key goal of
biomedical research is to seek out disease risk genes, and
to elucidate the function of these risk genes in the develop-
ment of disease and the complex networks of gene-gene
interactions underlying complex traits [4]. For this pur-
pose, expanding the AD-associated gene set is necessary.
However, with the rapid development of sequencing tech-
nology, large amounts of new sequence data must be
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analyzed to extract disease-related genes using novel, com-
putational approaches.
Thus far, methods based on different data-types and

different strategies have been applied in predicting AD-
associated genes. Prediction methods can be roughly
divided into five types: methods integrating protein-
protein interaction networks with information such as
protein subcellular localization, gene expression quanti-
fication, or gene functional annotation [5–8]; patterns of
sequence-based features shared by disease genes [9–11];
machine learning and network topological features [12];
or information about tissue-specific networks [13, 14].
In past research, these methods have been applied to
predict associated genes or biomarkers [15–17]. But
there are few reports on the predictions based on the
brain gene expression data.
We here present a genome-wide method using human

brain-specific gene interaction network constructed by
gene expression data, resulting in predictions for AD
candidate genes. The brain-specific network works by
integrating relations between each pair of AD-associated
genes, in order to present how genes function together
in the brain. This disease-gene classifier extracts the cor-
relation coefficients of known AD-associated/AD-un-
associated genes in this brain network, and then uses
the coefficients specific to AD-associated/AD-unassoci-
ated genes to predict the level of potential AD associ-
ation for every gene in the genome. After this initial
prediction, we then select the predicted AD-related
genes with GO functional annotations which are same
as those of most of known AD-association genes as the
candidate risk genes or biomarkers for AD. In addition,
we compared the sequence-based features of all genes,
in order to assess our approach. Furthermore, we found
that some of our predictions are consistent with associa-
tions reported elsewhere in the AD literature, validating
the result. The genome-wide complement of Alzheimer’s
candidate genes predicted in this study can thus be used
to explore the mechanism of AD, and ultimately, to as-
sist in the discovery of better treatments for AD.

Methods
Data sources
AD related genes
We collected 335 AD-associated genes from public
Alzheimer’s disease databases (AlzGene, http://www.alz-
gene.org/) and from publications treating upon AD.
Then, we collected total 22,646 genes and removed the
335 AD-associated genes and genes recorded in OMIM
(https://www.omim.org/) as our initial control dataset.
Finally, we selected 335 AD non-associated genes (the
same number of AD-associated genes) from the initial
control dataset with the minimal interaction between
335 AD-associated genes (Optimal Control Dataset). At

the same time, we randomly selected the other dataset
of 335 non-associated genes (n = 100) for SVM training,
but the Optimal Control Dataset had the highest correct
rate (Additional file 1: Figure S1).

Gene-gene interaction data
The machine learning method used require a set of
known gene-gene interaction data for the model input.
We obtained this data from GIANT [18] (http://giant.-
princeton.edu), which can be set to extract the subset of
tissue-specific interactions. Since the pathogenesis of
Alzheimer’s disease is associated with brain tissue, we
selected brain-specific, functional gene interaction data.

Prediction
There are many different supervised machine learning
approaches. We implement a prediction algorithm by
SVM (Support Vector Machines) using the e1071 pack-
age of R, published by David Meyer. SVM was chosen
here, as it can allow the assignment of different weights
to different classes. The kernel type used in training and
predicting is radial. In addition, a 5-fold cross validation
was performed, in order to assess the quality of the
model.

Results
We used human, tissue-specific networking to discover
the full spectrum of AD genes across the whole genome.
We then assessed the reliability of these genes (Fig. 1).
Here, we depict the AD genetic spectrum, and provide
an overview of the AD associated genes, honing the
focus of further AD study for future researchers.

Alzheimer’s disease genes spectrum
After initially collecting 335 AD-associated genes
[Additional file 2], we then classified these genes into
four categories, based on the strength of supporting
evidence (the number of positive evidence of family-
based studies and case-control studies). These were
labeled C1-AD: probable pathogenic genes. C2-AD:
high confidence genes. C3-AD: related genes, and C4-AD:
possibly associated genes. Three hundred thirty-five AD-
non associated genes as C5 group [Additional file 3]. Our
goal is, within the scope of whole genome analysis, to find
a stable relationship between a pair of genes, so as to find
the AD candidate genes closely linked to genes known to
be associated to AD.
According to the pathogenic mechanism of AD, we

recruited the brain-specific gene network data from
GIANT. Using these five gene groups, along with
their evidence classification, and integrating brain-
specific gene network data, we trained an evidence-
weighted, network-based classifier, using an SVM
approach. We randomly subdivided the total genes
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into two parts (10-fold cross-validation), which were
used as training dataset and testing dataset, respect-
ively. The classifier first identified network patterns
(The relationship between any gene and 670 genes
(335 AD associated genes +335 AD non-associated
genes) as the features of SVM model). Then, we used
the testing dataset to test the accuracy of the classi-
fier, and divided them into initial two categories (AD
related and AD non-related). We found that the aver-
age correct rate was 80.59% and the highest correct
rate reached 84.56% with the ROC curve (receiver op-
erating characteristic curve) as shown in Fig. 2. The
ROC curve was constructed by “ROCR” package in R
with a threshold of 0.561. Finally, we applied this
classifier integrating the classification of known AD-
associated genes to identify new AD candidate genes
which interact closely with the known AD associated
genes in the brain-specific network and divided those
candidate genes into different groups by comparing
the probability of each group and choosing the largest
one. This method resulted in a comprehensive,
genome-wide, ranked list of AD candidate genes.
To screen a more credible candidate gene list, we first

annotated all AD associated genes (known AD-
associated genes and AD predicted candidates) using the
Gene Ontology resource (GO: http://www.geneontolo-
gy.org/). We then performed a GO functional enrich-
ment analysis of 335 known AD-associated genes and
selected the top 10 GO items (Table 1) with P-values
(adjusted by false discovery rate [19]) below a max value
of 6.87e-11. Finally, we chose the AD predicted genes
annotated on those GO items to further obtain high-
confidence candidate genes. After this filter, we arrived
at a total number of 832 AD predicted genes
[Additional file 4].

The assessment of the full AD genes spectrum
In previous research, one prediction method has been
based upon similarities in sequence-based features in
disease genes [9–11]. Herein, a set of features was
chosen from the genes, in order to assess our
predictions.
The feature set (described in Table 2) reflects the

structure and content of each gene examined. Table 3
lists the differences among the features present among
the different sets of genes. Using the Mann-Whitney U
test, we discovered highly significant differences in gene

Fig. 1 Genome-wide prediction of Alzheimer-associated genes. Our prediction was based on machine learning methods that are trained upon
the already associated AD genes, which are already linked to AD at various levels of evidence (C1AD-C4AD), as a positive training set, and other
genes excluded from the OMIM database (C5) as a negative training set. Combining these with the human brain-specific gene network, we were
able to build an evidence-weighted, network-based classifier, and predict the probability of the association between each gene and AD across
the genome

Fig. 2 Receiver operating characteristic (ROC) curve for SVM model
classification effect. The threshold for the ROC was 0.561. At this
threshold, sensitivity was 0.859, specificity was 0.892, area under the
curve (AUC) was 0.94
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length, exon count, transcript count, 3’UTR length and
5’UTR length between the gene sequences of the AD-
associated gene set and the control set of genes. Besides,
there were also highly significant differences in trans-
membrane domain, signal domain and paralog calcu-
lated using the chi squared test. We reached the same
conclusion when comparing the AD candidate dataset
and control dataset.
Meanwhile, there was no statistically significant differ-

ence between the sequence patterns of AD-associated
genes and AD candidate genes (as described in Table 4).
The size (in bp) of the genes in both the AD-associated
dataset and the AD candidate dataset is significantly lar-
ger than among controls, and this is similar to previous
findings on AD association [9], which also report gener-
ally that genes associated with disease tend to be larger
than those involved in normal phenotypes. In much the
same way as larger total gene length is associated with
AD, the length of 3’ UTR and 5’UTR, transcript count

and the number of exons per gene, is in the AD-
associated dataset and AD candidate dataset all larger.
Genes in the known AD-associated dataset and the AD
candidate dataset had a median count of 10 exons and 8
transcripts, while genes in the control dataset had a me-
dian count of 5 exons and 3 transcripts. We also found
that there were significant differences in the length of 3’
UTR and 5’UTR in both AD-associated genes and AD
candidate genes, which both had a larger median length
of 3’UTR and 5’UTR, while genes in the control set had
a smaller median length (described in Table 3).
Furtherly, we added genes annotated to non-mental-

health diseases for comparison [14]. Differences calcu-
lated as p-value by using the Mann-Whitney U test
or chi squared test between any two sets of four gene
sets are shown in Table 4. On the basis of above
results, we guessed that the differences between the
sequence patterns of AD-associated genes and non-
mental-health genes (as Group 1) were greater than
that of AD-associated genes and AD candidate genes
(as Group 2), but less than that of AD-associated
genes and control genes (as Group 3). That is to say,
our guess was that the p-values of Group 1 were
smaller than that of Group 2, but larger than that of
Group 3. Finally, most of the results were up to our
expection, including length of gene and 5’ UTR, tran-
script count, transmembrane domain, signal domain
and paralog.
Graphs presenting the distributions of each feature in

the four datasets are shown in Fig. 3. It’s clear that the
peaks of feature values of the known AD-associated
dataset and AD candidate sets shift rightward, when
compared to those of the control set. To our knowledge,
the number of exons is also correlated to total gene
length. However, the differences in 5’ UTR and 3’ UTR
length have not been explained in terms of correlations
to other feature differences.

Table 2 The list of selected features of gene sets for comparison

Feature Source Description

Gene length Ensembl [29] Length of gene in bp

Protein length UniProt [30] Length of protein in aa

CDS length Ensembl Length of coding sequence in bp

Length of 3’ UTR Ensembl Length of the 3′ untranslated region
in bp

Length of 5’ UTR Ensembl Length of the 5′ untranslated region
in bp

Transcript count Ensembl Transcript count in the gene

Number of exons Ensembl Number of exons in the gene

GC content Ensembl GC content (%) of gene

Transmembrane
domain

Ensembl If the gene has a transmembrane
domain

Signal domain Ensembl If the gene has a signal domain

Paralog Ensembl If the gene has a paralog in the
human genome

Table 3 Significant differences among the AD-associated set,
control set and predicted AD candidate set

Feature AD-related
dataset (median)

Control dataset
(median)

AD-predicted
dataset (median)

Gene length (bp) 43,474.5 8906 36,937

Length of 3’ UTR
(bp)

309 103 362

Length of 5’ UTR
(bp)

345 134 332

Transcript count 8 3 8

Number of exons 10 5 10

Transmembrane
domain

31.31% 23.18% 32.04%

Signal domain 33.43% 14.09% 33.86%

Paralog 81.79% 45.97% 86.21%

Table 1 Top ten GO items of significantly enriched AD-associated
genes

Cluster P-values (FDR) Information

GO:0005515 5.70e-19 Protein binding

GO:0005615 5.34e-15 Extracellular space

GO:0042493 6.59e-15 Response to drug

GO:0042157 9.57e-15 Lipoprotein metabolic process

GO:0008203 1.68e-14 Cholesterol metabolic process

GO:0009986 5.34e-13 Cell surface

GO:0042802 1.61e-12 Identical protein binding

GO:0019899 3.24e-12 Enzyme binding

GO:0044281 3.55e-11 Small molecule metabolic process

GO:0001540 6.87e-11 Beta-amyloid binding
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Since the genes of the known AD-associated dataset were
selected from the literature published before 2015, we also
checked the predicted AD candidate gene set by scanning
papers published post-2014 to verify the accuracy of our
prediction (described in Table 5). As a result, we found that
the AD candidate genes which were also reported in the
post-2014 research could be roughly divided into several
types. First, our gene candidates were identified as being as-
sociated with AD genes [20–22]. For example, DAB1, a
novel candidate liability/protective gene, was identified by
functional enrichment analysis of 3 AD Genome-Wide As-
sociation Studies (GWAS). Second, the genes were simply
associated with risk of AD [23–25]. ANXA1 and CDC25C

were identified as potentially contributing to AD suscepti-
bility, by applying ICSNPathway analysis to the AD GWAS
meta-analysis data. Third, abnormal changes in gene modi-
fication level or expression level were shown to exist in AD
cases, when compared to the controls [23, 25]. For instance,
DNA methylation levels within the CRTC1 gene were de-
creased in human hippocampus tissue affected by AD, sug-
gesting that CRTC1 methylation plays an important role in
AD pathophysiology.

Discussion
In this study, we have elucidated the whole-genome
spectrum of AD, using a machine learning approach.

Table 4 The differences between any two of the four datasets calculated by the P value of Mann-Whitney U test or Chi-squared test

Features AD-associated dataset Control dataset AD-predicted dataset Non-mental-health dataset

Gene length
(Mann-Whitney U test)

AD- associated set – < 2.2E-16 0.01607 0.002573

Control dataset < 2.2E-16 – < 2.2E-16 < 2.2E-16

AD-predicted dataset 0.01607 < 2.2E-16 – 0.2018

Non-mental-health dataset 0.002573 < 2.2E-16 0.2018 –

Length of 3’ UTR
(Mann-Whitney U test)

AD-associated set – < 2.2E-16 0.109 0.1131

Control dataset < 2.2E-16 – < 2.2E-16 < 2.2E-16

AD-predicted dataset 0.109 < 2.2E-16 – 0.0003546

Non-mental-health dataset 0.1131 < 2.2E-16 0.0003546 –

Length of 5’ UTR
(Mann-Whitney U test)

AD-associated dataset – 1.17E-13 0.4351 0.008426

Control dataset 1.17E-13 – < 2.2E-16 3.05E-13

AD-predicted dataset 0.4351 < 2.2E-16 – 0.000159

Non-mental-health dataset 0.008426 3.05E-13 0.000159 –

Transcript count
(Mann-Whitney U test)

AD-associated dataset – < 2.2E-16 0.2962 0.0006213

Control dataset < 2.2E-16 – < 2.2E-16 < 2.2E-16

AD-predicted dataset 0.2962 < 2.2E-16 – 0.0006213

Non-mental-health dataset 0.0006213 < 2.2E-16 0.0006213 –

Number of exon
(Mann-Whitney U test)

AD-associated dataset – < 2.2E-16 0.1314 0.3506

Control dataset < 2.2E-16 – < 2.2E-16 < 2.2E-16

AD-predicted dataset 0.1314 < 2.2E-16 – 0.1537

Non-mental-health dataset 0.3506 < 2.2E-16 0.1537 –

Transmembrane domain
(Chi-square test)

AD- associated set – 0.03783 0.8109 0.6143

Control dataset 0.03783 – 0.01107 0.0448

AD-predicted dataset 0.8109 0.01107 – 0.302

Non-mental-health dataset 0.6143 0.0448 0.302 –

Signal domain
(Chi-square test)

AD- associated set – 3.70E-07 0.89 3.54E-05

Control dataset 3.70E-07 – 1.20E-08 0.006176

AD-predicted dataset 0.89 1.20E-08 – 1.12E-08

Non-mental-health dataset 3.54E-05 0.006176 1.12E-08 –

Paralog
(Chi-square test)

AD- associated set – < 2.2E-16 0.05604 0.0007944

Control dataset < 2.2E-16 – < 2.2E-16 < 2.2E-16

AD-predicted dataset 0.05604 < 2.2E-16 – 5.19E-13

Non-mental-health dataset 0.0007944 < 2.2E-16 5.19E-13 –
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We have classified the collected AD-associated genes by
potential pathogenesis and taken advantage of brain-
specific function networking to obtain correlations
within the activity of any given pair of genes. Through
this method, we expect for the candidate gene catalogue
to provide a more comprehensive annotation of AD for
researchers. Furthermore, this method could be applied
to other brain disease pathogenic genes prediction, such
as Parkinson’s disease, schizophrenia and so on.
By comparing the AD gene dataset with the control

gene dataset in the sequence-based features (Tables 3

and 4), we found the median length of AD genes was
much longer than controls. We speculate that the longer
the gene is, the more mutations it will accumulate and
the greater the pathogenicity it will be. Therefore, we
suggest the research of related disease genes could be
from the perspective of gene mutation load. What’s
more, the proportion of genes with paralogs in the AD
dataset is greater than in controls. It has been found
human monogenic disease genes have frequently func-
tionally redundant paralogs [26], but only one of the par-
alogous gene is associated with disease [27]. AD as a

Fig. 3 Distributions of selected features of different dataset. Distributions of predicted AD candidate set are basically consistent with those of
AD-associated set; rather, distributions of control set are quite different from those of AD-associated set and predicted AD candidate set

Table 5 Information about discovering AD-associated genes from published papers since 2015

Articles Total genes Trained genes Predicted genes

Chen J A, et al. [22] DYSF, PAXIP1 – PAXIP1

Xiao Q, et al.[31] CD2AP,SORL1, FERMT2,PVRL2, TOMM40 SORL1, FERMT2, TOMM40 PVRL2

Gao H, et al. [20] DAB1 – DAB1

Malishkavich A, et al. [32] ADNP – ADNP

Lee Y H, et al. [23] ANXA1, CDC25C – ANXA1, CDC25C

Zheng X, et al. [33] APC2 – APC2

Lin Q, et al. [24] APOA1,APOC3, APOA4 APOA1,
APOA4

APOC3

Marchesi V T, et al. [34] NLRP3,APP, TREX1,NOTCH3, COL4A1 APP NLRP3, COL4A1

Total 20 6 10
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typical complex disease driven by multiple factors, the
role of paralogs of pathogenic genes is worth further
investigation.
The human brain has enormously complex cellular diver-

sity, different parts of the neuron with different gene expres-
sion are specialized for different functions [28]. And AD is
not caused by the role of single gene, so we need from the
global point of view to study its development mechanism.
The AD gene dataset obtained in our study can be used to
explore the differences in gene expression and rare muta-
tions distribution between AD patients and normal controls
in different brain region, and clinically analyze the overex-
pression in AD brain neurons by single cell sequencing.
According to the GO functional enrichment analysis,

we found AD-associated genes may play a role in the
following GO items: protein binding, extracellular space,
drug response, lipoprotein metabolic process, cholesterol
metabolic process, cell surface, enzyme binding, beta-
amyloid binding. To our best knowledge, most of them
were concerned by different researchers, but there were
no reports on drug response and enzyme binding, which
may be a direction of our future study.

Conclusions
In this study, we have elucidated the whole-genome
spectrum of AD, using a machine learning approach.
Through this method, we expect for the candidate gene
catalogue to provide a more comprehensive annotation
of AD for researchers.
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