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Axonal chronic injury in treatment-naïve
HIV+ adults with asymptomatic
neurocognitive impairment and its
relationship with clinical variables
and cognitive status
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Abstract

Background: HIV is a neurotropic virus, and it can bring about neurodegeneration and may even result in cognitive
impairments. The precise mechanism of HIV-associated white matter (WM) injury is unknown. The effects of multiple
clinical contributors on WM impairments and the relationship between the WM alterations and cognitive performance
merit further investigation.

Methods: Diffusion tensor imaging (DTI) was performed in 20 antiretroviral-naïve HIV-positive asymptomatic
neurocognitive impairment (ANI) adults and 20 healthy volunteers. Whole-brain analysis of DTI metrics between
groups was conducted by employing tract-based spatial statistics (TBSS), including fractional anisotropy (FA),
mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). DTI parameters were correlated with clinical
variables (age, CD4+ cell count, CD4+/CD8+ ratio, plasma viral load and duration of HIV infection) and multiple
cognitive tests by using multilinear regression analyses.

Results: DTI quantified diffusion alterations in the corpus callosum and corona radiata (MD increased significantly,
P < 0.05) and chronic axonal injury in the corpus callosum, corona radiata, internal capsule, external capsule, posterior
thalamic radiation, sagittal stratum, and superior longitudinal fasciculus (AD increased significantly, P < 0.05). The
impairments in the corona radiata had significant correlations with the current CD4+/CD8+ ratios. Increased MD or
AD values in multiple white matter structures showed significant associations with many cognitive domain tests.

Conclusions: WM impairments are present in neurologically asymptomatic HIV+ adults, periventricular WM (corpus
callosum and corona radiata) are preferential occult injuries, which is associated with axonal chronic damage rather
than demyelination. Axonopathy may exist before myelin injury. DTI-TBSS is helpful to explore the WM microstructure
abnormalities and provide a new perspective for the investigation of the pathomechanism of HIV-associated WM
injury.
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Background
HIV can enter the central nervous system (CNS) soon after
seroconversion and cause persistent CNS inflammation [1].
With ongoing injury to the brain, it may lead to cognitive,
behavioural and motor abnormalities, which are called
HIV-associated neurocognitive disorders (HAND) [2].
HAND can be clinically subdivided into three categories:
asymptomatic neurocognitive impairment (ANI), mild neu-
rocognitive disorder (MND) and HIV-associated dementia
(HAD) [3]. ANI is the mildest and most common type of
HAND (accounting for 70%), which is characterized by
mild cognitive impairment on neuropsychological perform-
ance tests without obvious accompanying difficulties in
daily functioning [4]. HAD is the most severe form. These
definitions are mainly based upon an individual’s perform-
ance on multiple cognitive domains and a brief self-report
of cognitive difficulties in daily life. These neuropsycho-
logical tests are time consuming (~ 3 h) and are usually
performed in specific research institutions [3], so patients
in ANI stages are rarely diagnosed in traditional outpatient
visits (15–30 min).
Conventional structural magnetic resonance imaging

(MRI) scans are unable to detect early HIV-associated
brain white matter (WM) abnormalities [5]. As a nonin-
vasive and rapidly evolving MRI technique, diffusion
tensor imaging (DTI) can measure the diffusion of water
molecules in WM, and more recently, it has become a
popular method for studying HIV-induced WM micro-
structural integrity [6–12]. So far, tract-based spatial sta-
tistics (TBSS) is the most frequently recommended and
employed method of analysis for DTI [13], which over-
comes the limitations of conventional methods (region
of interest, ROI; voxel-based analysis, VBA). There are
four parameters for DTI, including fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AD), and
radial diffusivity (RD). As a marker of the diffusion dir-
ectionality of water molecules, FA can reflect the devi-
ation of water motion and provide information about
the microstructural integrity of highly oriented micro-
structures [14]. MD is a marker of the molecular motion
speed and can reflect the average diffusion in all three
directions [15]. AD is assumed to reflect diffusivity par-
allel to the WM tract, and RD represents diffusion per-
pendicular to the tract [16]. Generally, FA and MD are
influenced by AD and RD. Decreased FA and increased
MD are measures of neuronal injury, increased AD is a
measure of axonal chronic damage, and increased RD is
a measure of myelin damage [7, 17].
Though many DTI studies on HIV have reported a

loss of WM integrity [6–12], few studies have focused
on the WM microstructure in neuroasymptomatic HIV+
individuals without treatment. Zhu T et al. found that
WM injuries in neurologically asymptomatic HIV pa-
tients are mainly located in the posterior part of both

hemispheres (MD, AD, RD increased significantly) [7].
Wang B et al. observed a decrease in FA in the corpus
callosum and anterior corona radiata and an increase in
MD, RD, and AD in most skeleton locations [8]. In both
studies, the neuropsychological tests were assessed by
AIDS Dementia Complex (ADC) staging according to
the Memorial Sloan Kettering (MSK) staging system,
and an ADC score of 0 or 0.5 was considered neurocog-
nitive asymptomatic. Zhuang Y et al. investigated WM
changes in ANI patients diagnosed according to the
Frascati criteria [3] and found no significant WM micro-
structural differences between HIV-infected and healthy
controls [18]. Cysique LA et al. reported that the loca-
tion of WM injury in ANI cases was the anterior limb of
the internal capsule [19]. The above findings still exhibit
differences.
HIV-associated WM damage includes demyelination

and axonal injury; however, the relationship between
them and the neuropathology of HIV-related WM im-
pairment is still unclear. The primary oligodendrocyte
and myelin damage leading to secondary axonal damage
(outside-in) or primary axonopathy triggering oligo-
dendrocyte injury and demyelination (inside-out) are in-
distinguishable [20]. WM alterations may contribute to
cognitive deficits in HIV-infected patients [7, 18, 21]. It
is worth noting that the relationship between WM
abnormalities and cognitive status has not been well
characterized or systematically assessed.
Moreover, the effects of multiple clinical contributors

on cerebral WM integrity merit further investigation.
The various potential clinical influencing variables in-
clude factors that are directly related to HIV disease (i.e.,
CD4+ level, CD4+/CD8+ ratio, plasma viral load and
duration of HIV infection) and factors that can affect the
CNS, such as ageing. Recent studies have identified that
HIV duration was significantly correlated with DTI
parameters [7, 22]. FA values in the corpus callosum
were negatively correlated with the duration of infection
in antiretroviral-naïve primary HIV infection patients
[23]. Cohen RA et al. reported that the CD4 nadir and
the duration of HIV infection may be risk factors for
cerebral injury [24]. However, other studies showed dis-
senting results that age can exacerbate HIV-associated
WM abnormalities [11, 25]. Regrettably, there were dis-
crepancies in previous findings.
In the present study, we aimed to investigate the WM

microstructural changes in treatment-naïve HIV patients
with ANI through DTI-TBSS technology. In particular,
the current study was confined to treatment-naïve pa-
tients to rule out the possibility of antiretroviral therapy
(ART) erosion on WM integrity. We also wanted to
quantify the relationships between WM damage and age,
CD4+ counts, CD4+/CD8+ ratio, plasma viral load,
duration of HIV infection and cognitive status.
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Methods
Subjects
The protocol was approved by the ethics committee.
HIV participants were recruited from infectious disease
outpatient clinic of Beijing YouAn Hospital, Capital
Medical University. The inclusion criteria for patients
were as follows: age ≥ 18 years, naïve to ART prior to en-
rolment, and HAND stage of ANI. According to the in-
clusion criteria, we enrolled twenty patients from June
2014 to July 2016. Twenty seronegative healthy volun-
teers matched for age, gender and education level were
recruited from the same community by advertisements.
All subjects provided written informed consent prior to
enrolment. The exclusion criteria for both HIV-infected
and HIV-negative participants were as follows: 1) age <
18 years; 2) neurological disorders: epilepsy, stroke, an
active or known past opportunistic infection of the CNS;
3) alcohol or drug abuse within the last 6 months; 4)
stable anxiety or depression, including those managed by
stable anti-anxiety or antidepressant therapy; 5) contra-
indication to MR; 6) trauma, tumours, infection (except
HIV), vascular diseases and other visible brain lesions
on standard MRI (T1WI and T2-fluid attenuated inver-
sion recovery (FLAIR)).
In the HIV-infected individuals, HIV was confirmed by

an enzyme-linked immunosorbent assay and western blot
analysis. The duration of HIV infection was determined ac-
cording to patients’ self-reports on their risk behaviours.
The recent CD4+ counts were performed within 2 weeks of
neuroimaging. HIV RNA levels were measured from blood
plasma. The mode of HIV infection was sexual contact
(male homosexual contact for 14 patients, heterosexual
contact for 6 patients). The years of education ranged from
13 to 19 years (mean: 16.5 ± 1.8 years).
Two to three hours prior to the MRI scanning, each pa-

tient underwent a comprehensive neuropsychological as-
sessment, including 6 cognitive domains and a report of
cognitive difficulties in daily life. Self-questionnaires of daily
functioning were assessed with a short Activity of Daily Liv-
ing scale [26]. The neurocognitive evaluation surveys the
following abilities: verbal fluency (Animal Verbal Fluency
Test, AFT), attention/working memory (Continuous Per-
formance Test-Identical Pair, CPT-IP; Wechsler Memory
Scale, WMS-III; Paced Auditory Serial Addition Test,
PASAT), executive function (Wisconsin Card Sorting Tests,
WCST-64), memory (learning and delayed recall) (Hopking
Verbal Learning Test, HVLT-R; Brief Visuospatial Memory
Test, BVMT-R), speed of information processing (Trail
Marking Test A, TMT- A) and fine motor skills (Grooved
Pegboard, dominant and non-dominant Hands) [4, 27].
Raw scores for each test were transformed into T-scores
and adjusted for age, gender, and education level. T-scores
across more tests for one cognitive domain were averaged
to calculate domain-specific T-scores. Patients whose

cognitive impairment involved two or more cognitive abil-
ities (performance of at least one standard deviation below
the mean for norms on neuropsychological tests) and pre-
sented no cognitive difficulties in everyday life were diag-
nosed with ANI [3]. All patients were diagnosed with ANI
according to the Frascati criteria [3].
Twenty patients and twenty healthy controls received

MRIs. All scans were reviewed by an experienced neuro-
radiologist for motion artefacts and evidence of un-
known brain lesion, which could have affected DTI
indices. The image quality of one patient was poor. After
communicating with the patient, we immediately reac-
quired data and obtained good image quality. No MRI
scans were required to be excluded from DTI analysis.
Thus, we presented data for 20 patients and 20 controls.

MRI protocols
All MRI scans were performed on a Siemens Trio 3.0
Tesla imager. Standard structural images were acquired
using axial T1WI (repetition time (TR) = 250 ms, echo
time (TE) = 2.46 ms) and T2-FLAIR combined fat satur-
ation (TR = 8000 ms, TE = 2370.9 ms, inversion time =
97 ms) sequences to check whether there were visible
intracranial lesions. For DTI data, a single-shot echo-
planar imaging sequence was used for acquisition. The
parameters for DTI were: TR = 3300 ms, TE = 90 ms,
slice thickness = 4 mm with 1.2 mm gap, number of
slices = 63, matrix size = 128 × 128, field of view = 230 ×
230 mm, number of excitations = 3, space resolution = 1.
8 mm × 1.8 mm× 1.8 mm, total acquisition time = 3.
39 min. Diffusion sensitizing gradients were applied
along 20 non-collinear directions with b = 1000 s/mm2,
and one b = 0 s/mm2.
DTI datasets were performed and analysed using

FSL5.0 (FMRIB Image Analysis Group, Oxford, UK,
http://www.fmrib.ox.ac.uk/fsl) [28]. Details of the DTI
processing steps, including pre-processing and TBSS
processing, have been described previously [8, 29]. There
were three steps for pre-processing. The raw DTI images
were first corrected for the effects of eddy currents and
head movements and deformations using eddy current
correction within FDT. Then, brain mask extraction was
performed on one of the no-diffusion-weighting (b = 0)
images by running the Brain Extraction Tool in FSL. Fi-
nally, the diffusion tensor model was computed using
DTIFIT within FDT for whole brain volumes to generate
tensor-derived maps, including FA, MD, AD, and RD.
TBSS-processing includes four steps. The first is image
registration. Using the FA map as a target template for
registration, more accurate results can be achieved, as
FA is a normalized measure of eigenvalue standard devi-
ation and represents the degree of diffusion directional-
ity. A common registration target brain image template
(FMRIB58_FA) was identified, and all subjects’ FA
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images were aligned to this target using FMRIB’s non-
linear image registration tool, through which all the FA
volumes were aligned to a 1.0 × 1.0 × 1.0 mm3 Montreal
Neurological Institute standard space. Second, the mean
of all aligned FA images was skeletonized, and a mean
FA skeleton image (threshold = 0.2) was generated.
Third, the aligned FA image for each subject was
projected onto the mean FA skeleton by filling the
skeleton with maximum FA values from the nearest
relevant tract centre to generate a skeletonized FA map.
Corresponding skeletonized maps for the other diffusion
measures (MD, AD and RD) were also similarly
generated. Lastly, voxelwise statistical analyses of DTI
metrics were carried out on the skeleton space.

Statistical analysis
Demographic characteristics of the HIV+ participants
and healthy controls were analysed with IBM SPSS Sta-
tistics (version 22.0). Chi-squared analysis was used to
evaluate the sex distribution between HIV+ patients and
healthy controls. Independent t-test analysis was used to
calculate the differences in age and education level be-
tween the two groups. Significance was defined as p < 0.
05.
For TBSS analysis, voxel-wised statistics of the DTI

parameters (FA, MD, AD, RD) for the two group differ-
ences were tested in the general linear model framework
using the FSL randomize tool with a non-parametric
permutation testing (5000 random permutations) [30].
The threshold-free cluster enhancement (TFCE) method
with a threshold set at 0.95 was used to obtain correc-
tion for multiple comparisons [31], and statistical maps
were obtained with family-wise error (FWE) correction
at the p < 0.05 level. The significant group differences in
tracts were located with the Johns Hopkins University
(JHU)-ICBM-DTI-81 WM Label Atlas.
To investigate the relationships between DTI metrics

and clinical variables and cognitive performance for
HIV-positive patients, multiple linear regression analysis
between DTI indices and age, CD4+ counts, CD4+/CD8+

ratio, plasma viral load, duration of HIV infection and
scores of cognitive performance was performed. A
significance level of 0.05 was obtained using IBM SPSS
Statistics (version 22.0).

Results
Demographic information
The demographic and clinical information for HIV+ pa-
tients and healthy controls are listed in Table 1. There
were no significant differences in age, sex, or education
level (in years) between the HIV+ patients and healthy
controls.

White matter abnormalities in ART-naïve HIV+ patients at
ANI stage
Voxel-based TBSS demonstrated significant differences
in DTI parameters (MD and AD values) of HIV-infected
individuals compared to controls. The FA map and RD
map revealed no significant differences between the two
groups. The results were illustrated in Fig. 1 and Table 2.
Compared with healthy controls, HIV-positive patients
exhibited significantly higher MD in the genu, body and
splenium of corpus callosum, bilateral anterior and su-
perior corona radiate. Increased AD was observed in ex-
tensive brain regions, including the genu, body and
splenium of the corpus callosum; bilateral anterior and
superior corona radiata, anterior limb of the internal
capsule, external capsule; left retrolenticular part of the
internal capsule, posterior corona radiata, posterior thal-
amic radiation, sagittal stratum, superior longitudinal
fasciculus (all P < 0.05). Regions of increased AD were
much more prevalent than those of MD.

Correlations between DTI metrics and clinical variables
for HIV-infected patients
Fig. 2 shows the regression coefficients and significance
for clinical clinics on MD and AD values in the regions
of white matter impairment. The increased MD values
in the right anterior corona radiate were negatively cor-
related with CD4+/CD8+ ratios (r = − 0.437, P = 0.05)
(Table 3). Similar analyses showed that the increased AD
values in the left posterior corona radiata were
negatively correlated with CD4+/CD8+ ratios (r = − 0.
488, P = 0.029) (Table 4). The increased AD values in the
right anterior limb of the internal capsule were
positively correlated with viral load (r = − 0.848, P = 0.
019) and CD4+/CD8+ ratios (r = − 0.717, P = 0.003)
(Table 4).

Correlations between DTI metrics and cognitive
performance for HIV-infected patients
Reduced cognitive scores were significantly correlated
with either increased MD or AD in multiple white mat-
ter structures (Fig. 3, Table 3 and Table 4). Verbal

Table 1 Clinical and demographic data of study participants

Items Patient group
(N = 20)

Control
Group (N = 20)

p-value

Age 30.6 ± 9.6 31.5 ± 7.6 0.325b

Sex (M/F) 19:1 19:1 1.000a

Education level (year) 16.5 ± 1.8 16.1 ± 0.8 0.372b

Duration of infection (year) 3.1 ± 0.9 N/A N/A

CD4 (cells/ml) 254.6 ± 168.8 N/A N/A

Viral load (log) (copies/ml) 4.26 ± 1.1 N/A N/A

N number of subjects, M male, F female, N/A not applicable or available, a Chi-
squared analysis, b Independent t test, Significance level P < 0.05
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fluency scores were negatively correlated with AD values
in the left anterior corona radiata, anterior limb of the
internal capsule and right superior corona radiata. At-
tention/working memory scores were positively corre-
lated with AD values in the left anterior limb of the
internal capsule and right superior corona radiate. Mem-
ory (learning and delayed recall) test scores were nega-
tively correlated with MD values in the genu of the
corpus callosum, anterior corona radiata (bilateral) and
superior corona radiata (right). A positive correlation
was observed between the speed of information process-
ing scores and MD values in the genu of the corpus

callosum, anterior corona radiata (bilateral) and superior
corona radiata (right), AD values in the genu of the cor-
pus callosum, anterior limb of the internal capsule (bilat-
eral) and posterior thalamic radiation (left). Fine motor
scores were negatively correlated with MD values in the
genu of the corpus callosum, anterior and superior cor-
ona radiata (right), and AD values in the superior corona
radiata (right).

Discussion
This study not only supports but also further extends pre-
vious DTI findings in neuroasymptomatic HIV-positive

Fig. 1 TBSS analysis of DTI indices between HIV+ and control groups (Transverse section). Areas in red-yellow are regions where MD and AD
were significantly increased (P < 0.05, corrected by TFCE) in HIV-infected individuals compared with controls. The number below each brain
image indicates the Z coordinate in the Montreal Neurological Institute (MNI) space. MD, mean diffusivity; AD, axial diffusivity

Table 2 Location and cluster size of abnormal WM tracts between HIV patients and healthy controls

WM structures (JHU-WM Atlas) Side HIV patients vs. controls cluster size

MD AD

Genu of corpus callosum – 587 973

Body of corpus callosum – 1299 1901

Splenium of corpus callosum – 962 1615

Anterior corona radiata R 256 918

Anterior corona radiata L 236 716

Superior corona radiata R 121 448

Superior corona radiata L 255 845

Anterior limb of internal capsule R – 306

Anterior limb of internal capsule L – 363

External capsule R – 186

External capsule L – 279

Retrolenticular part of internal capsule L – 215

Posterior corona radiata L – 332

Posterior thalamic radiation L – 287

Sagittal stratum L – 105

Superior longitudinal fasciculus L – 358

WM white matter, MD mean diffusivity, AD axial diffusivity, L left, R right, JHU-WM Atlas the ICBM-DTI-81 White Matter Atlas
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Fig. 2 Regression coefficients and significance for clinical variables and white matter impairments. The increased MD values in the right
ACR negatively correlated with CD4+/CD8+ ratios. The increased AD values in the left PCR negatively correlated with CD4+/CD8+ ratios. The
increased AD values in the right ALIC positively correlated with viral load and CD4+/CD8+ ratiosNote: bar: P value; *: p < 0.1; **: p < 0.05; red
circle: regression coefficients of MD; black square: regression coefficients of AD.MD, mean diffusivity; AD, axial diffusivity; GCC, genu of corpus
callosum; BCC, body of corpus callosum; SCC, splenium of corpus callosum; ACR, anterior corona radiata; SCR, superior corona radiata; ALIC,
anterior limb of internal capsule; EC, external capsule; RIC, retrolenticular part of internal capsule; PCR, posterior corona radiata; PTR, posterior
thalamic radiation; SS, sagittal stratum; SLF, superior longitudinal fasciculus. l, left; r, right; VL, viral load; DI, duration of infection.

Table 3 Regression coefficients and significance for MD values and clinical variables and cognitive status scores

MD values of HIV-associated white matter impairment

GCC BCC SCC ACR_R ACR_L SCR_R SCR_L

Clinical Variables Age 0.057 − 0.118 −0.096 0.221 0.26 0.239 0.016

CD4 0.433 −0.282 − 0.637 0.986 − 0.724 −1.001 − 0.142

CD4/CD8 − 0.101 − 0.331 0.331 − 0.437 ** − 0.274 − 0.127 − 0.307

VL(log) 0.381* 0.162 0.207 0.277 0.006 0.287 0.055

DI 0.564 −0.281 −0.326 0.815 −0.8 −1.319 − 0.224

Cognitive Status VF −0.053 0.012 −0.169 −0.114 − 0.135 −0.293 − 0.459*

A/WM 0.021 −0.004 −0.238 0.21 −0.001 0.424 0.141

EF −0.272 −0.226 − 0.2 −0.172 − 0.133 −0.194 − 0.218

M(LDR) −0.417** −0.338 0.159 −0.511** − 0.559** −0.501** − 0.281

SIP 0.684** 0.427* 0.155 0.559** 0.583** 0.444** 0.239

FM −0.417** −0.259 −0.403* − 0.391** −0.321* − 0.474** −0.443*

The regression coefficients and significance results were calculated by the multiple linear analysis method. MD mean diffusivity, GCC genu of corpus callosum, BCC
body of corpus callosum, SCC splenium of corpus callosum, ACR anterior corona radiata, SCR superior corona radiata, L left, R right, VL viral load, DI duration of
infection, VF Verbal Fluency, A/WM Attention/Working Memory, EF Executive Functioning, SIP Speed of Information Processing, MS Motor Skills, * P < 0.1,
** P < 0.05
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individuals. One purpose of this study is to explore the
microstructure changes of WM in treatment-naïve ANI
patients employing the DTI-TBSS method. Compared
with healthy controls, ANI patients exhibited significantly
increased MD and AD in the corpus callosum and anter-
ior and superior corona radiate. The corpus callosum and
corona radiata were distributed around the lateral ven-
tricle. The anterior limb of internal capsule, external cap-
sule, retrolenticular part of the internal capsule, posterior
corona radiata, posterior thalamic radiation, sagittal
stratum, and superior longitudinal fasciculus presented
significantly increased AD, and we found that most of
them were also close to the ventricles. It is speculated that
HIV-associated WM involvement is selective rather than
random. Periventricular WM, especially the corpus callo-
sum and corona radiata, are more vulnerable to viral inva-
sion and neuroinflammation in early HIV infection in

adults, which are consistent with previous studies [6–8,
32, 33]. Ragin et al. even found a loss of WM integrity in
the corpus callosum within 100 days of HIV infection
[33]. It is not clear why these regions were vulnerable to
viral invasion and neuroinflammation. One possible ex-
planation is that the choroid plexus is the blood-
cerebrospinal fluid (CSF) barrier, and HIV can accumulate
in the CSF when it is destroyed. Studies have shown that
HIV can infiltrate the CSF as early as 8 days after exposure
[34], and CSF serves as a proxy for the brain parenchyma
and the reservoir for monocytes linked to HIV neuro-
pathogenesis [35]. Early neuroinvasion was identified by
measurable markers of CSF inflammation [34], and the
WM tracts around the ventricle might be affected grad-
ually. The interpretation of these results requires caution,
and future investigation will be needed to better
characterize them.

Fig. 3 Regression coefficients and significance for white matter alterations and cognitive performance. Verbal fluency scores were negatively
correlated with AD values in the left ACR, ALIC and right SCR. Attention/working memory scores were positively correlated with AD values in
the left ALIC and right SCR. Memory (learning and delayed recall) test scores were negatively correlated with MD values in the GCC, ACR
(bilateral) and SCR (right). A positive correlation was observed between speed of information processing scores and MD values in the GCC,
ACR (bilateral) and SCR (right), AD values in the GCC, ALIC (bilateral) and PTR (left). Fine motor scores were negatively correlated with MD values
in the GCC, ACR (right) and SCR (right), AD values in the SCR (right)Note: bar: P value; *: p < 0.1; **: p < 0.05; red circle: regression coefficients of
MD; black square: regression coefficients of AD.MD, mean diffusivity; AD, axial diffusivity; GCC, genu of corpus callosum; BCC, body of corpus
callosum; SCC, splenium of corpus callosum; ACR, anterior corona radiata; SCR, superior corona radiata; ALIC, anterior limb of internal capsule;
EC, external capsule; RIC, retrolenticular part of internal capsule; PCR, posterior corona radiata; PTR, posterior thalamic radiation; SS, sagittal
stratum; SLF, superior longitudinal fasciculus. l, left; r, right; VF, Verbal Fluency; A/WM, Attention/ Working Memory; EF, Executive Functioning;
M(LDR), memory (learning and delayed recall); SIP, Speed of Information Processing; FM, fine motor.
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WM tracts with increased AD are more extensive than
those of increased MD. The overlap and differences of
the two DTI parameters (MD and AD) in significantly
altered cerebral regions reflect differences in the nature
and degree of WM injury. Increased MD indicates an
increase of the water molecules’ diffusion speed, which
is caused by cell degeneration and a decrease of mem-
brane density. Increased MD may reflect inflammation
or increased glial activation, a measure of neuronal
injury. Increased AD is a marker of axonal chronic
damage [7, 36]. Increased RD is associated with the de-
struction of myelin integrity and is used as a marker for
demyelination [16, 17, 37]. RD abnormalities were not
found in the current ANI study. It was concluded that
MD changes in ANI subjects were mainly attributable to
increased AD, suggesting chronic axonal injury rather
than the disruption integrity of myelin in early HIV in-
fection. A similar study found elevated CSF neurofila-
ment light chain concentration and its correlation with
MRS-based metabolites in primary HIV infection [32],
and the neurofilament light chain is a sensitive marker
of axonal injury. These findings demonstrate that axono-
pathy may exist before myelin injury, and this may be a
novel observation. However, whether can axonal injury
trigger demyelination (inside-out) is not yet clear. In re-
cent DTI studies on ultra-early HIV infection, the au-
thors focused only on FA and MD, and AD and RD
were not calculated [23, 33]. AD and RD are also im-
portant, as they provide information on the nature of
the WM microstructure alterations observed in HIV pa-
tients. Researching on multiple metrics of DTI may help
us to comprehend the pathophysiology of HIV-related
WM injury. The relationship of axonal and myelin injury
needs to be better characterized in future HAND
pathology studies.
FA abnormalities were also not found in ANI patients,

which implies that RD maybe the predominant factor
that contributes to decreased FA. Similar findings also
have been reported, which showed that FA changes were
attributable to increased RD [14, 38]. In addition, several
DTI studies noted that significant alterations in FA were
found mainly in cognitively impaired HIV-infected
patients [7, 39]. Thus, MD may be a more sensitive bio-
marker than FA in evaluating WM injury in early HIV
infection.
Our previous DTI study in early HIV infection showed

significant differences in MD, AD, and RD values be-
tween a therapy naïve HIV+ group and healthy control
group [29]. One resemblance between the two studies is
the distribution of white matter abnormalities. Another
similarity is that white matter abnormalities are all
reflected in the changes of MD and AD values, rather
than FA values. The difference is that the previous study
has a wider range of WM injury. Additionally, changes

of RD values can be seen in a few WM tracts (genu of
corpus callosum and superior corona radiate), which in-
dicates myelin damage. A possible reason is that HIV-
infected patients in the previous study were classified
into ADC stage 0 according to the MSK classification.
While MSK is a decent scale to globally express the state
of cognitive functioning, it is not very sensitive to
changes in less affected patients. The Frascati scale used
in the current study may be more sensitive to identify
and classify individuals with subclinical impairment.
More detailed neuropsychological assessment for earlier
HIV-infected patients is the novel element of the current
study relative to the previous study. Corrêa et al. found
that HIV patients with planning deficits had significantly
decreased FA, increased MD and RD values, predomin-
antly in frontal lobes, genu and splenium of the corpus
callosum, and much less widespread abnormalities were
seen in the AD values compared with normal controls.
HIV+ patients with planning deficits also had signifi-
cantly decreased FA values and increased MD and RD
values in some white matter regions compared to those
without planning deficits [40]. No significant abnormal-
ities AD values were seen between the two groups.
These results indicated that RD abnormal values pre-
dominated in the areas of decreased FA compared to
AD values, suggesting that demyelination could play a
role in the physiopathology of HIV-related WM injury,
which is not completely consistent with our results. The
possible reason for the difference between the two re-
sults was that participants in the previous article all re-
ceived ART, and with longer known infection.
Antiretroviral drugs may be injurious to brain cell ele-
ments. The influence of treatment on brain structure
and function are less clear [41]. HIV+ patients on low
CNS penetration ART had a significantly greater fMRI
response amplitude compared to the HIV+ patients on
high CNS penetration ART or normal controls [42]. To
the best of our knowledge, no studies have detected the
effects of ART regimen CNS penetration effectiveness
on WM microstructure. Effects of treatment should be
explored in future studies.
The MD values in the right anterior corona radiata and

AD values in the left posterior corona radiata have a sig-
nificantly negative correlation with CD4+/CD8+ ratios,
and the regression coefficient is 0.437 and 0.488,
respectively; in other words, WM microstructure changes
(43.7% in the anterior corona radiata, 48.8% in the
posterior corona radiate) can be influenced by CD4+/
CD8+ ratios. The abnormality of AD values was related to
axonal chronic injury. Clinically, the lower CD4+/CD8+

ratios were related to immunosenescence [43]. This might
imply that immunosenescence among the ANI patients
would accelerate the axonal chronic injury in the corona
radiata, and the lower CD4+/CD8+ ratio might be an
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important predictor of WM injury in the corona radiata.
Furthermore, we found that plasma viral load remained
independently associated with AD values in the right
anterior limb of the internal capsule, and the regression
coefficient was 0.533. The higher the plasma viral load,
the higher are the AD values in the right anterior limb of
the internal capsule. The higher plasma viral load
represents the activity and replication of HIV in the
human internal environment. The positive correlation
indicates that the WM microstructure in the anterior limb
of the internal capsule was susceptible to viral replication in
HIV infection. The current findings were not fully consistent
with previous studies [7, 11, 22–25], and the results of
previous studies also varied. This may be due to the
difference and heterogeneity in participants with diverse
treatments, sample size, cognitive status, and disease
durations. Further studies are needed to resolve this
incongruity and reliability.
Associations between WM microstructure alterations

and cognitive impairment were observed in the current
study. Several other studies have reported that WM
changes were related to HIV-associated cognitive diffi-
culties [44–46]. WM microstructure changes in the an-
terior and superior corona radiata and anterior limb of
the internal capsule were significantly correlated with
poorer verbal fluency. WM damage in the genu of the
corpus callosum and anterior and superior corona
radiata were significantly correlated with poorer memory
(learning and delayed recall) and slower fine motor
speed. The corona radiata is the radiated projection fibre
connecting the internal capsule to the cerebral cortex.
The corona radiata and internal capsule are important
WM nodes that promote the transfer of sensorimotor
information between the brain stem, thalamus and fron-
tostriatal circuit [47]. The anterior corona radiate con-
nects the anterior and medial nuclei of the thalamus to
the prefrontal cortex. The superior corona radiate in-
volves corticospinal tracts and the posterior frontal part
of the anterior thalamic radiation [7]. The corpus callo-
sum is the largest and most prominent WM tract, which
is responsible for the communication of interhemi-
spheric information. The genu of the corpus callosum
contains the posterior frontal part of callosal fibres [7].
The corpus callosum and corona radiate are pivotal in
extensive cognitive function, such as verbal fluency, at-
tention, memory, psychomotor speed and executive
functioning. The significant correlation between neuro-
cognitive performance and MD and AD values from
multiple WM microstructures suggests that WM abnor-
malities have functional consequences. HIV-related cog-
nitive impairment may be associated with cortical and
subcortical track loss caused by WM fibre bundle dam-
age, and the WM microstructure may serve as an indica-
tor to objectively predict cognitive deficits and

progression. However, a multivariate model also showed
that the WM microstructure alterations in the superior
corona radiate and anterior limb of the internal capsule
better predicted sustained attention/working memory.
WM injury in the genu of the corpus callosum, anterior
and superior corona radiata, anterior limb of the internal
capsule and posterior thalamic radiation were signifi-
cantly correlated with faster speed of information pro-
cessing. A potential explanation for this may be some
sort of compensatory mechanism, and it needs to be fur-
ther verified in future multimodal studies (DTI com-
bined functional MRI).
There were several limitations in the current study.

First, the study was limited to a small sample size. A lar-
ger sample size would be more helpful to improve the
power of the statistical analysis. Second, the participants
were almost exclusively male, which may prevent the
generalization of these results to HIV-infected women.
Certainly, given that the gender gap is narrowing with
rates of infection increasing in women, we are trying our
best to extend our studies to include female patients in
the future. Third, a cognitively intact HIV-positive group
will be studied in further work. Fourth, a longitudinal
follow-up study is imperative to observe the dynamic
changes of WM after ART.

Conclusions
The observations of the current study strengthen the
possibility that HIV-infected individuals at the ANI stage
have underlying WM fibre abnormalities, which could
be measured by increased MD, and the pathogenesis of
this damage is likely to be predominantly the axonal
chronic injury associated with increased AD. DTI has
the potential to promote a better understanding of the
pathogenesis of brain WM changes. Specific brain re-
gions around the ventricle, especially the corpus callo-
sum and corona radiata, are susceptible to be involved.
Relationship exists between WM damage, HIV-related
clinical factors, and cognitive status. HIV patients with a
history of advanced immune suppression and higher
viral load may be at high risk of WM injury. WM dam-
age and disconnection to the cortex probably contribute
to cognitive impairments.
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