Li et al. BMC Neurology (2018) 18:108

https://doi.org/10.1186/512883-018-1108-2 BMC Neuro | Ogy

RESEARCH ARTICLE Open Access

Evaluation of patients with relapsing- @
remitting multiple sclerosis using tract-

based spatial statistics analysis: diffusion

kurtosis imaging

Hai Qing Li'", Bo Yin'", Chao Quan?®', Dao Ying Geng'?, Hai Yu? Yi Fang Bao', Jun Liu*" and Yu Xin Li"*"

Abstract

Background: Diffusion kurtosis imaging (DKI) has the potential to provide microstructural insights into myelin and
axonal pathology with additional kurtosis parameters. To our knowledge, few studies are available in the current
literature using DKI by tract-based spatial statistics (TBSS) analysis in patients with multiple sclerosis (MS). The aim of
this study is to assess the performance of commonly used parameters derived from DKI and diffusion tensor
imaging (DTI) in detecting microstructural changes and associated pathology in relapsing remitting MS (RRMS).

Methods: Thirty-six patients with RRMS and 49 age and sex matched healthy controls underwent DKI. The brain
tissue integrity was assessed by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial
diffusivity (Dr), mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr) of DKI and FA, MD, Da and Dr of DTI.
Group differences in these parameters were compared using TBSS (P < 0.01, corrected). To compare the sensitivity
of these parameters in detecting white matter (WM) damage, the percentage of the abnormal voxels based on
TBSS analysis, relative to the whole skeleton voxels for each parameter was calculated.

Results: The sensitivities in detecting WM abnormality in RRMS were MK (78.2%) > Kr (76.7%) > Ka (53.5%) and Dr
(78.8%) > MD (76.7%) > FA (74.1%) > Da (28.3%) for DKI, and Dr (79.8%) > MD (79.5%) > FA (68.6%) > Da (40.1%) for
DTI. DKI-derived diffusion parameters (FA, MD, and Dr) were sensitive for detecting abnormality in WM regions with
coherent fiber arrangement; however, the kurtosis parameters (MK and Kr) were sensitive to discern abnormalities in
WM regions with complex fiber arrangement.

Conclusions: The diffusion and kurtosis parameters could provide complementary information for revealing brain
microstructural damage in RRMS. Dr and DKI_Kr may be regarded as useful surrogate markers for reflecting
pathological changes in RRMS.
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Background

Multiple sclerosis (MS) is a chronic disorder of the CNS,
characterized by focal white matter (WM) plaques along
with diffuse normal appearing WM (NAWM) damage
and cortical demyelination [1]. Diffusion tensor imaging
(DT1) is one of the most widely used methods in detecting
microstructural abnormalities based on water diffusion
measures with the assumption that the diffusion displace-
ment of water molecule in an unrestricted environment
has a Gaussian approximation [2].In reality, water mole-
cules often show non-Gaussian diffusion due to the pres-
ence of barriers of cell membranes, axon sheaths, and
water compartments in biological tissues [3]. So it is
thought that DTI may not be capable to provide accurate
values at dense intersections of fiber tracts [4]. In contrast,
as a clinically feasible extension of DTI, diffusion kurtosis
imaging (DKI) has been proposed to characterize the devi-
ation of water diffusion in neural tissues from Gaussian
diffusion [5, 6]. Both diffusion parameters including frac-
tional anisotropy (FA), mean diffusivity (MD), axial diffu-
sivity (Da), radial diffusivity (Dr) and kurtosis parameters
including mean kurtosis (MK), axial kurtosis (Ka), radial
kurtosis (Kr) could be obtained from DKI data. DKI can
be regarded as a more sensitive indicator of diffusional
heterogeneity and can be used to investigate abnormalities
in tissues with isotropic structure [6, 7].

The sensitivity of DKI has been evaluated in
age-related diffusion patterns in the prefrontal brain [8],
reactive astrogliosis in traumatic brain injury [9], and
cuprizone-induced demyelination in mice [10], which
showed better demonstration of microstructural changes
than with DTI. However, there were few studies to valid-
ate the merits of DKI in evaluating patients with MS
[11, 12]. Tract-based spatial statistics (TBSS) provides a
powerful and objective method to perform multi-subject
comparisons [13].

In this study, the microstructural alterations reflected
by both DKI and DTI parameters in relapsing-remitting
multiple sclerosis (RRMS) were investigated using TBSS.
Our aim is to assess the performances of 11 commonly
used parameters derived from DKI (MK, Ka, Kr, FA,
MD, Da and Dr) and DTI (FA, MD, Da and Dr) in de-
tecting microstructural abnormalities in RRMS.

Methods

Subjects

Thirty-six (13 male and 23 female) consecutive patients
with RRMS (diagnosed by McDonald criteria [14]) were
prospectively enrolled in this study. All patients under-
went clinical assessments, including relapse history and
disability assessment using EDSS before MRI examin-
ation. Patients were excluded if they had a history of
other CNS disorders, corticosteroid use or relapses
within three months prior to MRI. For comparison, 49
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age- and gender-matched healthy controls (17 male and
32 female), with no previous history of neurological disor-
ders were recruited (Table 1). Approval for this study was
obtained from the Ethics Committee of Huashan Hospital,
Fudan University and written informed consent was ob-
tained from all the subjects.

MRI data acquisition

All scans were acquired using Discovery MR750 3.0 T
scanner (GE Healthcare, Milwaukee, WI, USA) with an
eight-channel phase array head coil.

An axial FLAIR sequence (SE: repetition time/ echo time
=8800/146 ms, slice thickness=6.0 mm, field of view
=512 x 512 mm, voxel size = 0.5 x 0.5 x 6.0 mm>) for white
matter lesion volume calculation was performed. DKI was
acquired with two values of b (b=1250 and 2500 s/mm>?)
along 25 diffusion-encoding directions and b value of 0 s/
mm? along 25 non-diffusion-weighted images, with a
spin-echo single-shot echo planar imaging (EPI) sequence
(TR/TE =4700/102 ms; matrix = 128 x 128; FOV =240 x
240 mmy; slice thickness = 4 mm without gap; 35 axial slices;
acquisition time was 8 min and 42 s).

White matter lesion volume calculation

With MRIcron software (http://www.nitrc.org/projects/
mricron/) we drew all the WM leisons manually on
FLAIR images and calculated total WM lesion volume for
each patient and summerized it in Table 1.

DKI data processing

We used the same methodology from a previously pub-
lished work [15], and the differences were as following.
In “calculation of diffusion and kurtosis parameters”, all
the data (b=0, 1250, 2500 s/mm?) were used for DKI
fitting and only images with b =0 and 1250 s/mm® were
employed for DTI fitting. In “tract-based spatial statis-
tics”, group comparisons between RRMS patients and
healthy controls were performed using a general linear
model. The percentage of the abnormal voxels relative
to the whole skeleton voxels for each parameter was cal-
culated, so as to quantitatively compare the sensitivity of
parameters from DKI and DTI in detecting brain tissue
integrity impairments in RRMS.

Results

Kurtosis parameters from DKI

Compared with healthy controls, RRMS patients had sig-
nificantly decreased DKI-derived kurtosis parameters in
WM regions (P<0.01, two-tailed, FWE corrected) with
complex fiber arrangement, such as in the juxtacortical
WM and corona radiata. DKI_MK, DKI_Ka and DKI_Kr
could detect abnormal diffusion in 78.2%, 53.5% and
76.7% voxels of the whole WM skeleton respectively. Kur-
tosis parameters are shown in Fig. 1.
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Table 1 Demographic and clinical characteristics of RRMS patients and healthy controls

Characteristics RRMS patients Healthy controls P value
Number of subjects 36 49

Age (years) 329+106 323+106 0.8*
Sex (male: fernale) 13:23 17:32 09*
EDSS 15 (0-5° NA

Disease duration(month) 545+628 NA

White matter lesion volume (ml) 17.94 +19.00 NA

“A Chi-square test of Pearson and *a t-test of Student were used to test the group differences in sex and age respectively. The data were shown as the mean
values + standard deviations. Abbreviations: EDSS expanded disability status scale, °median is 1.5, interquartile range is 1,1.5,2.375, minimum-maximum is 0-5. NA

not applicable

Diffusion parameters from DKI

Compared with healthy controls, RRMS patients demon-
strated reduced DKI_FA in WM regions with coherent
fiber arrangement, such as the corpus callosum and anter-
ior limb of internal capsule, and increased DKI_MD,
DKI_Da and DKI_Dr (P < 0.01, two-tailed, FWE corrected).
DKI_FA, DKI_MD, DKI_Da and DKI_Dr could detect ab-
normal diffusion in 74.1%, 76.7%, 28.3% and 78.8% voxels
of the whole WM skeleton respectively. DKI-derived diffu-
sion parameters are shown in Fig. 2.

Diffusion parameters from DTI

RRMS patients exhibited similar patterns with
DKI-derived diffusion parameters. FA was reduced, MD,
Da and Dr were increased (P < 0.01, two-tailed, FWE cor-
rected). DTI_FA, DTI_MD, DTI Da and DTI_Dr could
detect abnormal diffusion in 68.6%, 79.5%, 40.1% and
79.8% voxels of the whole WM skeleton respectively.
DTI-derived diffusion parameters are shown in Fig. 3.

Discussion
Although DTI has been widely used in investigating
structural changes in the NAWM in MS [16, 17], it may

not provide accurate parameters at dense intersections
of fiber tracts [4]. In contrast, DKI can be used to quan-
tify non-Gaussian diffusion, thus providing accurate pa-
rameters at dense intersection of fiber tracts [6]. To our
knowledge, there were only a limited number of studies
using DKI in MS patients [11, 12, 18, 19], Raz E et al.
measured FA, MD, and MK values of the entire
cross-sectional cord area, normal-appearing gray matter
(NAGM) and WM in MS patients by DKI using
region-of-interest (ROI) analysis, they thought that DKI
could provide additional and complementary informa-
tion to DTI on spinal cord pathology [11]. In another re-
search, DKI was used to evaluate diffusional changes in
NAWM regions remote from MS plaques using ROI
analysis, the results indicated that DKI might be an add-
itional sensitive indicator for detecting tissue damage in
MS patients [12]. They concluded that DKI was sensitive
for detecting tissue damage in MS patients and could
provide information that was complementary to that of
conventional DTI-derived metrics. However, most of
these above-mentioned studies adopted ROI-based ana-
lysis, which had poor reproducibility of ROI positioning
and only a limited number of specific regions can be

Fig. 1 TBSS shows WM regions with significant differences in the DKI_MK, DKI_Ka and DKI_Kr between RRMS patients and healthy subjects (P <
0.01, FWE corrected). Green represents mean FA skeleton of all participants; blue represents reduction in RRMS patients. The percentage in the
left column represents the percentage of the abnormal voxels relative to the whole skeleton voxels for each parameter
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Fig. 2 TBSS shows WM regions with significant differences in the DKI_FA, DKI_MD, DKI_Da and DKI_Dr between RRMS patients and healthy
subjects (P < 0.01, FWE corrected). Green represents mean FA skeleton of all participants; red denotes increase and blue represents reduction in
RRMS patients. The percentage in the left column represents the percentage of the abnormal voxels relative to the whole skeleton voxels for
each parameter

examined. In contrast, the TBSS method used in this
study was relatively a novel hypothesis-free and
user-independent voxel-wise analysis.

In this study, TBSS analysis of both DKI and DTI
derived parameters showed widespread WM damage
in RRMS patients compared with healthy controls,
which was consistant with previous studies using DKI
[19] or DTI [20, 21]. Similarly to a research study

using DKI in schizophrenia patients, we also observed
that DKI-derived kurtosis and diffusion parameters
had differernt sensitivity to detect abnormality in
WM areas with different fiber architecture [15].
Moreover, we found that the MK decrease in the
WM of RRMS patients was predominantly caused by
the Kr decrease, and the FA decrease was mainly
driven by the increase of Dr.

=
4

Fig. 3 TBSS shows WM regions with significant differences in the DTI_FA, DTI_MD, DTI_Da and DTI_Dr between RRMS patients and healthy
subjects (P < 0.01, FWE corrected). Green represents mean FA skeleton of all participants; red denotes increase and blue represents reduction in
RRMS patients. The percentage in the left column represents the percentage of the abnormal voxels relative to the whole skeleton voxels for
each parameter
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FA measures anisotropic water diffusion and is proven
to be most applicable for assessing WM regions with co-
herent fiber arrangement. However, it is not suitable for
detecting diffusion changes of complex WM architec-
ture, such as crossing fiber regions [22, 23]. As the most
characteristic parameter of DKI, MK measures the devi-
ation of the diffusion displacement profile from a Gauss-
ian distribution and enables to probe WM regions with
complex fiber arrangement [24]. Therefore, the combin-
ation of diffusion and kurtosis parameters may provide
improved sensitivity and specificity in detecting alter-
ations in various WM structures. This theoretical predic-
tion has been validated by a previous study in
schizophrenia patients [15], and confirmed by our find-
ings that altered diffusion parameters (especially reduced
DKI_FA) were observed mainly in WM regions with co-
herent fiber arrangement (such as the corpus callosum
and anterior limb of internal capsule). The percentage of
abnormal DKI_FA voxels (74.1%) relative to the whole
skeleton voxels was higher than that of DTI_FA (68.6%)
in this study, which suggest that DKI_FA might have
higher sensitivity than DTI_FA in detecting abnormality
in WM regions, while reduced kurtosis parameters were
mainly located in WM regions with complex fiber ar-
rangement (such as the juxtacortical WM and corona
radiate). The percentage of abnormal MK voxels relative
to the whole skeleton voxels was 78.2%, which suggest
that MK might have higher sensitivity than DTI in de-
tecting abnormality in WM regions. Therefore, appropri-
ate DKI derived parameters should be selected to probe
altered diffusion pattern in specific WM regions in
RRMS patients.

As we know, there is strong directional dependence of
water distribution within myelinated WM tracts. How-
ever, once inflammation and demyelination occur, diffu-
sivity will increase and directionality will decrease. The
increase of diffusivity manifested as increase of Dr (diffu-
sion perpendicular to the long axis) and Da (diffusion
along the long axis). However, decreased Da was re-
ported in some animal experiments [25, 26]. In our
opinion, these studies may not take into account the full
complexity of pathological processes occurred in RRMS.
The increase of Da found in our RRMS patients was
consistent with a TBSS study using DTI in RRMS pa-
tients [20]. The cause may be explained by severe de-
creases in axonal packing density which would lead to a
whole increase in extracellular water, resulting in larger
Dr increases and subsequent Da increases. Other re-
ported reasons include fiber re-organization, increased
axonal diameter and membrane permeability [27, 28]. In
our study, the percentage of abnormal DKI_Dr voxels
(79.8%) relative to the whole skeleton voxels is signifi-
cantly higher than that of DKI_Da (28.3%), which dem-
onstrated that the increase of MD (mean diffusivity) and
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decreased FA mainly caused by the increased DKI_Dr.
Similarly, this pattern of changes was also found in
DTI_Da and DTI_Dr. Interestingly, when assessing the
contribution of DKI_Ka and DKI_Kr in those regions
showing significantly decreased DKI_MK, we found
these were driven predominantly by decreases in DKI_Kr
(76.5% vs DKI_Ka 53.5%). All these above-mentioned
findings suggested demyelination might be regarded as a
key factor among various pathological changes in RRMS.
So Dr and DKI_Kr might be regarded as useful surrogate
markers for reflecting pathological changes and improv-
ing clinical-radiological correlations in MS. Further-
more, Dr and DKI_Kr measured by TBSS might have
great potential to be a MRI biomarker in monitoring
remyelination in MS patients.

Conclusions

In conclusion, DKI-derived parameters were sensitive to
detect abnormality in microstructural changes. The diffu-
sion and kurtosis parameters could provide complementary
information for revealing pathological changes in RRMS
patients. Dr and DKI_Kr might be regarded as a useful sur-
rogate marker for reflecting pathological changes and im-
proving clinical-radiological correlations in MS patients.
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