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Do fragments and glycosylated isoforms of
alpha-1-antitrypsin in CSF mirror spinal
pathophysiological mechanisms in chronic
peripheral neuropathic pain? An
exploratory, discovery phase study
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Abstract

Background: Post-translational modifications (PTMs) generate a tremendous protein diversity from the ~ 20,000
protein-coding genes of the human genome. In chronic pain conditions, exposure to pathological processes in the
central nervous system could lead to disease-specific PTMs detectable in the cerebrospinal fluid (CSF). In a previous
hypothesis-generating study, we reported that seven out of 260 CSF proteins highly discriminated between neuropathic
pain patients and healthy controls: one isoform of angiotensinogen (AG), two isoforms of alpha-1-antitrypsin (AT), three
isoforms of haptoglobin (HG), and one isoform of pigment epithelium-derived factor (PEDF). The present study had three
aims: (1) To examine the multivariate inter-correlations between all identified isoforms of these seven proteins; (2) Based
on the results of the first aim, to characterize PTMs in a subset of interesting proteins; (3) To regress clinical
pain data using the 260 proteins as predictors, thereby testing the hypothesis that the above-mentioned seven
discriminating proteins and/or the characterized isoforms/fragments of aim (2) would be among the proteins
having the highest predictive power for clinical pain data.

Methods: CSF samples from 11 neuropathic pain patients and 11 healthy controls were used for biochemical
analysis of protein isoforms. PTM characterization was performed using enzymatic reaction assay and mass
spectrometry. Multivariate data analysis (principal component analysis and orthogonal partial least square
regression) was applied on the quantified protein isoforms.

Results: We identified 5 isoforms of AG, 18 isoforms of AT, 5 isoforms of HG, and 5 isoforms of PEDF. Fragments and
glycosylated isoforms of AT were studied in depth. When regressing the pain intensity data of patients, three isoforms
of AT, two isoforms of PEDF, and one isoform of angiotensinogen “reappeared” as major results, i.e., they were major
findings both when comparing patients with healthy controls and when regressing pain intensity in patients.

Conclusions: Altered levels of fragments and/or glycosylated isoforms of alpha-1-antitrypsin might mirror
pathophysiological processes in the spinal cord of neuropathic pain patients. In particular, we suggest that a
putative disease-specific combination of the levels of two different N-truncated fragments of alpha-1-antitrypsin might
be interesting for future CSF and/or plasma biomarker investigations in chronic neuropathic pain.
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Background
A substantial part of our knowledge about the patho-
physiology of pain has been acquired through animal
experiments. Although there are obvious similarities
between species, there are also differences, and translating
evidence from animals to humans in this field is far from
trivial [1]. The quest for human biomarkers, which would
mirror the pathophysiology of different chronic pain con-
ditions, must be understood against this background. Bio-
markers would be useful for diagnosis and prognosis of
different pain conditions, for the evaluation of treatment
response, and for the development of drugs; they could
also serve as surrogate endpoints (i.e., as substitutes for
clinical endpoints) [2].
Post-translational modifications (PTMs) generate a tre-

mendous protein diversity from the ~ 20,000 protein-coding
genes of the human genome, the complexity of the
proteome being several orders of magnitude greater
than the coding capacity of the genome [3–5]. After the
genome, mapping the proteome is next in turn [6].
Whereas the genome is constant, the proteome is con-
tinuously modulated by genome-environment interac-
tions [7, 8]. PTMs modulate enzyme activity, protein
turnover and localization, protein-protein interactions, vari-
ous signaling cascades, DNA repair, and cell division [5].
Glycosylation, i.e. when a carbohydrate is attached to a

protein, is one type of PTM [5]. The glycosylation form
of a protein can be altered significantly because of changes
in cellular pathways and processes resulting from inflam-
matory conditions, neurodegeneration, or cancer [9]. These
potentially detectable protein modifications may lead to the
discovery of specific and sensitive biomarkers [10]. Protein
fragments, i.e. proteins that have been truncated either
at the N- or C-terminal end of the amino acid sequence,
are also potential specific biomarkers [11]. Indeed, in the
context of dementia, the term “protein fragmentology”
has been used [12], as has the term “degradome research”
[13]. In the pain field, such a well-known neuropeptide as
Substance P has biologically active and detectable frag-
ments [14].
In chronic pain conditions, exposure to pathological

processes in the central nervous system (CNS) could
perhaps lead to a disease-specific fragmentation process
detectable in the cerebrospinal fluid (CSF). Protein frag-
ments are also interesting because their smaller size would
enable them to cross the blood-brain barrier (BBB) easier
than full-length proteins, and hence fragments would
probably be easier to detect in blood [12].
Neuropathic pain is defined as pain caused by a lesion

or disease in the somatosensory nervous system [15]. In
a previous comparative two-dimensional gel electrophoresis
study [16], we described seven CSF proteins highly dis-
criminating between neuropathic pain patients and healthy
controls. These seven proteins were one isoform of

angiotensinogen (AG), two isoforms of alpha-1-antitrypsin
(AT), three isoforms of haptoglobin (HG), and one isoform
of pigment epithelium-derived factor (PEDF). The three
aims of the present exploratory, discovery phase study [17]
were:

1. To examine the multivariate inter-correlations
between all identified isoforms of these seven
proteins, using multivariate data analysis by projection
(MVDA) [18, 19]. The focus here was not on
discriminant analysis but rather on the internal
correlation structure between these isoforms in
health vs. neuropathic pain. Our hypothesis was
that neuropathic pain is associated with an altered
correlation structure between the different isoforms
of a particular protein, compared to healthy controls.

2. Based on the results of the first aim above, to
characterize PTMs in a subset of interesting
proteins. Because protein fragments seem especially
promising as biomarkers (their generation by
disease-specific processes could reduce the overlap
between diagnostic groups) [12], special attention
was given to fragmented proteins [11].

3. Returning to MVDA and focusing on the patients,
to regress clinical pain parameters (pain intensity
and pain duration), using all the proteomic data
(260 proteins) of our previous study as predictor
variables [16]. We wanted to test the hypothesis
that the above-mentioned seven discriminating
proteins and/or the characterized isoforms/fragments
of aim (2) above would be among the proteins having
the highest predictive power for either pain intensity
or pain duration.

Hence, the purpose of the study was not to conduct
clinical biomarker research at the validation stage; in-
stead, this was a pre-clinical exploratory study in the
early discovery stage [17, 20].

Methods
Patients
The patients have been described extensively in a previous
paper [16]. All pain patients included in this study were
participating in a clinical trial of intrathecal bolus injections
of the analgesic ziconotide [21]. Inclusion criteria were: 1)
patient, at least 18 years of age, suffering from chronic
(≥6 months) neuropathic pain due to trauma or surgery,
who had failed on conventional pharmacological treatment;
2) average Visual Analogue Scale chronic Pain Intensity
(VASPI) last week ≥40 mm [22]; 3) patient capable of judg-
ment, i.e. able to understand information regarding the
drug, the mode of administration and evaluation of efficacy
and side effects; 4) signed informed consent.
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After informed consent, the following data were reg-
istered: basic demographic data; pain diagnosis; pain
duration; present and past medical history; concomitant
medication. A medical examination was performed. All
patients had at least probable post-traumatic/post-surgical
neuropathic pain according to the criteria published by
Treede et al. [23], and all were or had been candidates for
Spinal Cord Stimulation. Detailed patient characteristics
have been published elsewhere [16, 21]. After CSF sam-
pling, the patient received an intrathecal bolus injection of
ziconotide according to the protocol of the clinical trial.
For an overview of patients vs healthy controls, see

Table 1.

Healthy controls
Healthy controls were recruited by local advertisement
at the Faculty of Health Sciences, Linköping University,
Sweden, and by contacting healthy subjects from earlier
studies. After informed consent, a structured interview
was conducted to ensure the absence of any significant
medical condition. The following areas were specifically
assessed in the interview: earlier major trauma; back,
joints, muscles or skeletal disease; heart or vascular disease;
lung or bronchial disease; psychiatric symptoms; neuro-
logical, ear or eye disease; digestive tract disease; kidney,
urinary or genital disease; skin disease; tumor or can-
cer; endocrine disease; hematological disease; birth de-
fects; other disease, disability or allergy. Moreover, the
presence of a known bleeding disorder was specifically
inquired for.
The absence of a chronic pain condition was ensured by

a structured questionnaire covering sociodemographic data,

presence of pain now, location of pain now, generalization
of pain, presence of intermittent pain, duration of persistent
pain. The questionnaire also covered anxiety and depressive
symptomatology using Hospital Anxiety and Depression
Scale [24], coping aspects (i.e., catastrophizing) using Pain
Catastrophizing Scale [25], and health-related quality of
life aspects using Short Form-36 (SF-36) [26], in order
to ensure that the controls were healthy. Subjects were
also given the possibility to make a pain drawing about
Pain Now, Pain at worst and Pain at best. Musculoskeletal
pain was more deeply assessed by VASPI last month for 9
specific anatomical locations: neck; shoulders; arms; hands;
upper back; lower back; hips; knees; feet. Concomitant
medicines were registered. A medical examination was
performed, including assessment for fibromyalgia tender
points.

Procedures
For every subject in this study, intrathecal access was
obtained by lumbar puncture with a 27 GA pencil-point
Whitacre needle (BD Medical, Franklin Lakes, New Jersey,
USA) and a 10 ml sample of CSF was drawn in five num-
bered syringes of 2 ml each. Each sample was immediately
cooled on ice and transported to the Painomics® laboratory,
Linköping University Hospital, centrifuged and divided in
aliquots and stored at − 70°C until analysis.

Biochemical analyses
The comparative proteomic study between patients and
healthy controls was performed as described in our
previously study [16]. Briefly, 100 μg of depleted CSF
proteins from each subject (11 patients and 11 healthy

Table 1 Overview of patients and healthy controls

Variables Patients
(n = 11)

Healthy controls
(n = 11)

Statistics
p-value

Age (years) 58 (35–75) 23 (20–28) < 0.001*

Sex (% female) 55% 55% 1.0

Body Mass Index (kg/m2) 24.7 (20.2–30.0) 22.6 (20.8–26.5) 0.065

Pain duration (months) 65 (30–180) 0 < 0.001*

Pain intensity (0–100 mm)a 72 (40–87) 0 < 0.001*

Opioid doseb (mg/day) 0 (0–480) 0 0.076

On opioids (%) 45% 0% 0.035*

On tricyclics or duloxetine (%) 36% 0% 0.090

On gabapentinoids (%) 36% 0% 0.090

On paracetamolc (%) 45% 0% 0.035*

On NSAIDc (%) 18% 0% 0.476

Data are presented as median (range) or percentages. Furthest to the right is the result of the statistical comparisons between patients and healthy controls. *
denotes significant group difference
Notes:
a: At inclusion, patients were asked to grade their average pain intensity for last week on a Visual Analogue Scale 0–100 mm, whereas the pain status of healthy
controls was investigated by an extensive structured interview. All controls were free of pain
b: In oral morphine equivalents
c: Excluding treatment “as needed”. NSAID: Non-Steroidal Anti-Inflammatory Drug
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controls) were separated by 2-DE, visualized by silver
staining and the protein patterns were digitalized and
quantified using CCD camera (VersaDoc™ Imaging
system 4000 MP, Bio-Rad) in combination with a com-
puterized imaging 12-bit system designed for evalua-
tions of 2-DE patterns (PDQuest 8.0.1 Bio-Rad). The
different gel images were evaluated and protein spots
were quantified according to spot optical densities
(SOD). The generated SODs were evaluated for sig-
nificant differences between the groups.
For the characterization of the different protein iso-

forms, a pooled CSF sample from patients and a pooled
sample from healthy subjects were used. The samples
were desalted, lyophilized and dissolved in urea sample
buffer solution, as has been described in detail elsewhere
[16]. Protein concentration was determined before and
after desalting step using Bradford assay [16]. To examine
N-glycosylation, 300 μg of CSF proteins were incubated in
presence or absence of an N-glycosidase PNGase F (Sigma
Aldrich) at 37 °C overnight using conditions recom-
mended by the supplier and as has been described in de-
tail elsewhere [27]. The proteins were then analyzed by
2-DE.
The interesting protein spots were excised from the

gels, trypsinated and identified by liquid chromatography
tandem mass spectrometry (LC-MS/MS) using Linear Trap
Quadropole (LTQ) Orbitrap Velos Pro hybrid (Thermo
Fisher Scientific) in conjunction with nano flow HPLC
system (EASY-Nlc II, Thermo Fisher Scientific). Data pro-
cessing of the spectra was performed using MaxQuant soft-
ware, and the generated mass list was searched against
SwissProt human protein sequence database as previously
described [16]. When identifying fragments of proteins, the
position of the matched peptides within the theoretical se-
quence of the protein were computed using the proteomic
tool Compute pI/MW (http://www.expasy.org/proteomics).
The calculated pI/MW of the fragment was controlled to
be in agreement with the apparent mass and pI on the
2D-gel.

Statistics
Traditional univariate statistical methods can quantify
level changes of individual substances but disregard
interrelationships between them and thereby ignore
system-wide aspects. Therefore, we used SIMCA ver-
sion 13.0 (Umetrics AB, Umeå, Sweden) for MVDA
computations. Conceptually, imagine a multidimensional
space where each protein is a dimension (“k” dimensions).
Each subject (patient or control) will be a point in this
k-dimensional space. Due to a combination of techno-
logical development (rendering high “k”) and practical/
economic constraints (leading to a low number of subjects
“n”), todays data tables in the omics field often have a low
subjects-to-variables ratio (n < <<k). Classical regression

techniques like multiple linear regression (MLR) or lo-
gistic regression (LR), which were developed in the
early days of the twentieth century, are not suited for
such high-dimensional and multi-collinear data. Hence,
todays data table often break one of the underlying
assumption behind MLR and LR, namely that the pre-
dictor (X) variables are fairly independent. MLR and LR
also assume that a high subject-to-variables ratio is
present (e.g., > 5), and they have difficulties coping with
missing data. Due to the above-mentioned drawbacks
of classical regression techniques (with regression coef-
ficients becoming unstable and their interpretability
breaking down), the modern MVDA methods of Princi-
pal Component Analysis (PCA) and Orthogonal Partial
Least Squares (OPLS) regression were used instead. PCA
and OPLS can handle subject-to-variables ratios < 1, and
they cope well with both multi-collinearity and missing
data. OPLS is a recent, easier-to-interpret modification of
Partial Least Squares (PLS). The MVDA workflow and
the reporting of parameters necessary for evaluating
model quality were in accordance with the paper pub-
lished by Wheelock & Wheelock [19]. For all MVDA
analyses, data were log-transformed when needed
(using the SIMCA function “auto transform selected
variables as appropriate”) and scaling to unit variance
was applied [18, 19].
For Aim 1 we used PCA, which is the foundation of

all latent variable projection methods, separately for pa-
tients (n = 11) and healthy controls (n = 11), focusing on
all the isoforms of the seven proteins mentioned in the
introduction. Each isoform had previously been quanti-
fied by SOD [16]. In a multivariate data set, important
information can be found in the correlation structure of
the whole data set, i.e. in the inter-correlations between
all the variables taken together as a whole. PCA entails
the definition of a few latent variables that describe the
underlying structure in the data. The latent variables
(called principal components, PC) are uncorrelated to
each other, and they summarize and simplify the data,
separating information from noise and enabling to find
relevant patterns in the data. Optimal model dimensional-
ity (i.e. number of PCs) is determined by cross-validation,
which is a practical and reliable way to test the signifi-
cance of a PCA model. This is default in SIMCA. Hence,
PCA can be viewed as a form of multivariate correlation
analysis. PCA also enables the identification of multivari-
ate outliers and deviant subgroup, as assessed by Hotell-
ing’s T2 statistic (T2 Critical 95%) and by distance to
model in X-space (DModX). The R2 value indicates how
well the model explains the dataset, and cross-validated
Q2 is a measure of the predictive power of the model. If
R2 is substantially greater than Q2 (a difference > 0.3 is
mentioned in the literature) [18], the robustness of the
model is poor, suggesting overfitting [19].

Bäckryd et al. BMC Neurology  (2018) 18:116 Page 4 of 14

http://www.expasy.org/proteomics


A PC relates to each original variable by a loading,
which has a value between − 1 and + 1. Variables with
high loadings (ignoring the sign) are considered to be of
large or moderate importance for the PC under consid-
eration. Hence, PCA is a data visualization technique
that models the correlation structure of a dataset, pre-
senting the relationship between variables in a loading
plot. On a loading plot, variables close to each other are
positively correlated, and variables that are unimportant
for the model are found around the origin of the plot
(i.e., variables with loadings near zero do not contribute
to the model) [18].
For Aim 3, OPLS was used to regress (predict) two

clinical variables in patients: VASPI last week and pain
duration. Hence, the outcome variable (Y) was one of
these two clinical variables, whereas the predictor vari-
ables (X:s) where the relative quantification of 260 pro-
teins by SOD in accordance with our previous study
[16]. Concerning optimal model dimensionality (i.e. the
number of latent variables) and R2/Q2, see above.
In OPLS, the importance of each variable for the

model can be measured as a Variable Influence on Pro-
jection (VIP) value. This indicates the relevance of each
X-variable pooled over all dimensions and Y-variables –
the group of variables that best explain Y. Variables with
VIP ≥ 1.0 and having a 95% confidence interval not in-
cluding zero are usually considered significant, but in
this study VIP≥ 1.5 was used. The direction of the rela-
tionship (positive or negative) was determined by sign of
the corresponding loading.
For traditional univariate statistics, all computations were

made using IBM® SPSS® Statistics version 23. Spearman’s
rho correlation coefficient was used for bivariate correlation
analysis, and Mann-Whitney U test or Fisher’s exact test
were used for comparing groups (for continuous and cat-
egorical data, respectively). A two-sided significance level of
0.05 was chosen.

Results
Correlation structure in patients vs. controls (aim 1)
We identified 5 isoforms of AG, 18 isoforms of AT, 5
isoforms of HG, and 5 isoforms of PEDF – amounting
to a total of 33 proteins. Hence, we generated a SIMCA
data table consisting of 22 individuals (rows) and spot
optical densities from 33 proteins (columns). To enable
quick identification when looking at loading plots (see
below), AG, AT, HG, or PEDF was added to the original
spot number. Moreover, on basis of their location on the
gels, five groups of AT were identified, which were re-
ferred to by Roman numeral I-V; AT5106 did not belong
to any group (Fig. 1). Because of the large number of
missing values in AT group V (3 isoforms with missing
values in 68%, 68% and 63% of cases, respectively), pro-
teins from that group were not included in the analysis

of Aim 1. Hence, the statistical models described below
were based on 30 protein variables.
First, an unsupervised PCA model for healthy controls

(n = 11) was computed. The model had one PC (R2 = 0.31,
Q2 = 0.12). No multivariate outliers were found. The load-
ings column plot of the model is depicted in Fig. 2a. Then,
an unsupervised PCA model for patients was computed
(n = 11). The model had one PC (R2 = 0.29, Q2 = 0.02).
No multivariate outliers were found. The loadings col-
umn plot of the model is depicted in Fig. 2b. Then, the
two loadings column plots were compared (Fig. 2a and b),
focusing on the seven proteins with the highest discrimin-
atory power between patients and healthy controls accord-
ing to our previous study [16], namely AG3409, AT5106,
IV_AT1505, HG1211, HG1203, HG2205, and PEDF3308:

� AG3409: In healthy controls, AG3409 is separated
from the four other isoforms of AG, and these four
isoforms inter-correlated positively, ie the loading
values (p [1]) were similar. This correlation structure
is disrupted in patients in the sense that, in patients,
it is AG4404 that is separated from the four other
isoforms of AG.

� AT5106: In Fig. 2b, the p [1] value of I_AT111
(black column) is almost the same as that of AT5106
(white column), i.e. these two proteins inter-correlated
positively in patients. In healthy controls (Fig. 2a), this
was not the case.We have previously shown that
AT5106 was downregulated in patients, whereas
I_AT111 (although not being one of the seven highest
discriminating proteins) was upregulated [16]. Hence,
in patients, a down-regulated isoform of AT correlated
by PCA to an up-regulated isoform of AT. However,
looking at these two proteins with traditional bivariate
correlation (i.e., not multivariate PCA), there was no
statistically significant association between them,
neither in patients nor in healthy controls.

� IV_AT1505: In both patients and healthy controls,
IV_AT1505 is close to zero, meaning that this
isoform does not contribute much to the two PCA
models. IV_AT1505 also remains fairly isolated
from the other isoforms of group IV. The
remaining isoforms of group IV of AT positively
inter-correlate in a similar way in both health and
disease.

� HG1211, HG1203, HG2205: No clear correlation
structure was discernable for these three isoforms.
The same was true for the two other isoforms of HG.

� PEDF3308: It was difficult to discern a clear pattern
concerning PEDF3308 and its isoforms.

Post-translational modifications (aim 2)
Based on the above-mentioned correlation between AT5106
and I_AT111 (albeit by PCA, not traditional bivariate
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correlation), we decided to focus the biochemical part
of the present paper on characterizing some of the
post-translational modifications and fragments of AT.
The 18 isoforms of AT are highlighted in Fig. 1, and the
analyzed isoforms are shown in Table 2. As can be seen in
Table 2, we found six truncated forms of AT, and we were
able to show that seven isoforms were N-glycosylated.
Three of the N-glycosylated isoforms (spots 1605, 1606,
and 2601) belonged to AT group V which, as described
above, had a large proportion of missing values. However,
at least one AT group V isoform was present in seven out
of 11 patients compared to two out of 11 healthy controls
(p = 0.04, Fisher’s exact test).
AT5106 and I_AT111, which were positively inter-cor-

related in patients by PCA, were both confirmed to be
N-terminal truncated fragments. IV_AT1505 was
N-glycosylated.

Regression of clinical pain parameters (aim 3)
First, pain intensity data in patients (“VASPI last week”)
was regressed, using the 260 proteins from our earlier
study as predictor variables (X-variables). The OPLS
model on 11 patients with “VASPI last week” as out-
come variable (Y-variable) rendered three components
(R2 = 0.99, Q2 = 0.43), and the results are summarized in
Table 3. Notably, the protein having the highest VASPI-VIP
(as well as a high and significant Spearman’s rho) was a

previously not identified isoform of alpha-1-antitrypsin
(spot 2515, Table 3).
Of the proteins described in Aim 1 (including

Table 2), the following four proteins had a high VIP
(i.e. VIP≥ 1.5) and a significant Spearman’s rho cor-
relation coefficient:

� PEDF3308 had VIP = 2.38, which was the second-
highest VIP of the model (rank 2 out of 260
proteins). The bivariate correlation between
“VASPI last week” and PEDF3308 was positive
(rho = 0.75, p = 0.008), Fig. 3.

� I_AT110 had VIP = 1.83 (rank 13 out of 260
proteins). The bivariate correlation between “VASPI
last week” and I_AT110 was negative (rho = − 0.676,
p = 0.022). Going back to Fig. 2b, it can be seen that
I_AT110 positively inter-correlated with I_AT111
(and hence with AT5106) in patients, and this was
confirmed by classical bivariate correlation (rho =
0.664, p = 0.026); in healthy controls, no such
correlation existed between I_AT110 and
I_AT111 (rho = 0.191, p = 0.574).

� I_AT111 had VIP = 1.75 (rank 19 out of 260
proteins). The bivariate correlation between “VASPI
last week” and I_AT111 was negative (rho = − 0.781,
p = 0.005), Fig. 4.

� AG3409 had VIP = 1.73 (rank 20 out of 260
proteins). The bivariate correlation between “VASPI

Fig. 1 Typical cerebrospinal fluid two-dimensional electrophoresis gel, highlighting the 18 isoforms alpha-1-antitrypsin with their spot number.
Proteins separate according to pI (range 3–10) and according to Mw (range 15–250 kDa)
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last week” and AG3409 was positive (rho = 0.81,
p = 0.003), Fig. 5.

Moreover, PEDF3211, which was one of the five iso-
forms of PEDF in Aim 1 above, also had a very high

VASPI-VIP (VIP = 2.14, rank 4 out of 260 proteins),
albeit with a non-significant Spearman’s rho (rho =
0.58, p = 0.064).
Hence, three isoforms of AT, two isoforms of PEDF,

and one isoform of angiotensinogen “reappeared” as

Fig. 2 Loadings column plot for healthy controls (a) (n = 11) and neuropathic pain patients (b) (n = 11). Each column represents the value of the
loading p [1] of that particular protein in the principal component analysis (PCA) model. The columns of the two fragments of alpha-1-antitrypsin
(AT) that the present paper focuses on (I_AT111 and AT5106) are depicted in black and white, respectively. Other protein abbreviations are
angiotensinogen (AG), haptoglobin (HG), and pigment epithelium-derived factor (PEDF). The number after each protein name abbreviation
corresponds to the spot number
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major results when regressing VASPI, i.e., they were
major findings both in the present study and in our pre-
vious study [16].
Then, pain duration in patients was regressed using

the 260 proteins from our earlier study as predictor vari-
ables (X-variables). The OPLS model on 11 patients with
“pain duration” as outcome variable (Y-variable) had 3
components (R2 = 0.99, Q2 = 0.54), and the results are
summarized in Table 4. Of the proteins described above
in Aim 1 (including Table 2), seven proteins had a high
VIP for pain duration (i.e. VIP≥1.5), but none of these
proteins had a significant Spearman’s rho correlation co-
efficient for pain duration. Among these seven proteins,
however, the presence of AG3409 was noted, as it was
rather highly ranked among the 260 proteins (VIP =
1.95, rank 12 and rho = − 0.39, p = 0.233).

Discussion
The results presented in this paper suggest that fragments
of AT might be considered as potential biomarkers for
pathophysiological processes in the spinal cord of patients
suffering from chronic peripheral neuropathic pain. AT in
CSF is considered to be plasma-derived [28], but exposure
to pathological processes in the central nervous system
during diffusion from plasma to CSF could potentially lead
to a disease-specific fragmentation process detectable in
the CSF. However, local CNS production of AT in patho-
logical conditions is also a possibility [29, 30].
The results presented here should be viewed as

hypothesis-generating [31], and the low number of subjects

in the study is of course a strong limitation, as is the
age difference between the groups. Another limitation
is the fact that the patients were using analgesics, intro-
ducing a potential confounding effect; moreover, concern-
ing paracetamol and Non-Steroidal Anti-Inflammatory
Drugs (NSAID), the percentages reported in Table 1 might
perhaps somewhat underestimate the size of this problem
because treatment “as needed” was not recorded. The diffi-
culties inherent in CSF sampling (not least in pain patients)
should however be remembered, and the usefulness of
the CSF for CNS biomarker studies should be empha-
sized [13, 32]. Human pain proteomic CSF studies that
actually report biomarker candidates are rare, and those
that have been published typically report about 10 sub-
jects per group [33, 34].
Protein fragments are emerging as important potential

biomarkers in medicine in general [11]. Indeed, in the
context of dementia research, the term “protein fragmen-
tology” has been used [12]. What makes protein fragments
so interesting in a CNS context is that their small size
could enable them to cross the BBB easier than full-length
proteins, and they would theoretically therefore be easier
to detect in plasma [12]. As taking a blood sample is much
easier than doing a lumbar puncture for CSF analysis, this
is a very important practical aspect to take into consider-
ation when searching for useable biomarkers.
Three fragments of AT stand out as especially interesting:

AT5106, I_AT111, and I_AT110. AT5106 is a very small
fragment (Table 2 and Fig. 1), and in our previous study it
had the second-highest discriminatory power between

Table 2 Post-translational modifications (PTMs) of 18 isoforms of cerebrospinal fluid alpha-1-antitrypsin

SPOT NUMBER Mw (kDa) pI Unique peptides Peptides position START-END PTM

1605 153.0 5.50 18 35–418 N-glycosylation

1606 153.0 5.52 18 35–418 N-glycosylation

2601 153.0 5.54 18 35–418 N-glycosylation

1310 70.9 5.25 14 35–418 –

1308 69.5 5.35 20 35–418 –

2311 69.5 5.39 25 35–418 –

2310 68.2 5.44 25 35–418 –

2308 68.2 5.50 31 35–418 –

216 36.7 4.78 6 180–411 N-terminal truncation

215 35.4 4.80 16 126–418 N-terminal truncation

214 33.4 4.90 6 35–241 C-terminal truncation

111 38.9 5.10 10 126–418 N-terminal truncation

110 37.4 5.15 16 154–418 N-terminal truncation

5106 19.4 6.50 7 299–418 N-terminal truncation

1505 57.6 5.3 12 35–418 N-glycosylation

2504 60.9 5.5 12 35–418 N-glycosylation

2508 68.3 5.5 12 35–418 N-glycosylation

2512 68.2 5.4 12 35–418 N-glycosylation
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groups, being down-regulated in patients [16]. The correl-
ation of AT5106 with I_AT111 in patients (as revealed by
comparing the PCA column loading plots, Fig. 2a and b),
lead to a particular interest also in the latter fragment. In-
deed, I_AT111 turned out to be an important predictor of
VASPI by MVDA, and it correlated negatively with VASPI

by traditional bivariate statistics (Fig. 4). In our previous
study, I_AT111 was shown to be up-regulated in pa-
tients [16]. We therefore speculate that the combination
of down-regulated N-truncated AT5106 and up-regulated
N-truncated I_AT111 could mirror disease-specific pro-
cesses in the spinal cord. The negative correlation with

Table 3 Proteins associated with Visual Analogue Pain Intensity last week (VASPI) in patients with peripheral neuropathic pain

SPOT NB VASPI-VIP Protein name Bivariate correlation with VASPI

Spearman’s rho p-value

2515 2.41 Alpha-1-antitrypsin 0.77 0.005*

3308 2.38 Pigment epithelium-derived factor 0.75 0.008*

4204 2.31 Fibrinogen gamma chain 0.72 0.012*

3211 2.14 Pigment epithelium-derived factor 0.58 0.064

7001 2.11 Prostaglandin-H2 D-isomerase 0.63 0.040*

6105 2.01 Kallikrein-6 0.62 0.041*

6104 2.00 Prostaglandin-H2 D-isomerase −0.54 0.084

1111 1.97 Apolipoprotein E 0.66 0.028*

2405 1.89 Antithrombin 0.65 0.031*

2514 1.87 Beta-Ala-His dipeptidase 0.46 0.163

6613 1.84 Serotransferrin 0.70 0.016*

110 1.83 Alpha-1-antitrypsin −0.68 0.022*

6206 1.79 Serotransferrin 0.52 0.104

1506 1.78 Beta-Ala-His dipeptidase 0.14 0.678

8004 1.77 Prostaglandin-H2 D-isomerase −0.26 0.440

7202 1.76 Procollagen C-endopeptidase enhancer 1 0.38 0.244

111 1.75 Alpha-1-antitrypsin −0.78 0.005*

3409 1.73 Angiotensinogen 0.81 0.003*

6205 1.72 Serotransferrin −0.45 0.163

8108 1.67 Prostaglandin-H2 D-isomerase −0.40 0.226

4611 1.66 Hemopexin 0.48 0.140

1205 1.64 Complement factor B −0.62 0.041*

2205 1.64 Haptoglobin 0.30 0.375

2522 1.63 prothrombin 0.40 0.226

7713 1.62 plasminogen −0.73 0.103

3302 1.61 Antithrombin 0.55 0.081

2504 1.61 Alpha-1-antitrypsin 0.37 0.257

8414 1.60 IgG heavy chain −0.44 0.177

6304 1.58 Beta-2-glycoprotein 1 −0.21 0.535

8204 1.57 Prostaglandin-H2 D-isomerase 0.24 0.473

9507 1.56 Complement C4-A −0.28 0.399

5620 1.55 Serum Albumin 0.42 0.204

3204 1.53 Pigment epithelium-derived factor 0.56 0.075

8413 1.52 IgG heavy chain −0.23 0.491

7407 1.50 IgG heavy chain −0.26 0.440

Note: Proteins are listed in decreasing order of importance according to Variable Influence on Projection (VIP) of the OPLS model. Only protein isoforms with
VIP ≥ 1.5 are reported (see Methods section). Spot NB refers to the marked protein spot in Additional file 1: Figure S1
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VASPI could perhaps indicate that I_AT111 indirectly
mirrors the efficacy of anti-nociceptive mechanisms, i.e.
it would be up-regulated in patients, and those who
have more of it would have less activity in the nocicep-
tive pathways. Does I_AT111 hence indirectly mirror
an anti-inflammatory compensating mechanism in the

spinal cord? The speculative nature of this line of rea-
soning must be emphasized. By PCA as well as by trad-
itional bivariate correlation, it is also notable that
I_AT111 and I_AT110 positively inter-correlated in pa-
tients but not in healthy controls. All in all, we specu-
late that the interactions of these three fragments of AT

Fig. 3 Pain intensity vs PEDF spot 3308. Scatter plot of Visual Analogue Scale Pain Intensity (0–100 mm) last week (VASPI) vs. spot optical density
(SOD) of pigment epithelium-derived factor (PEDF) spot 3308 in the cerebrospinal fluid of patients with peripheral neuropathic pain (n = 11).
Spearman’s rho = 0.75, p = 0.008

Fig. 4 Pain intensity vs AT spot 111. Scatter plot of Visual Analogue Scale Pain Intensity (0–100 mm) last week (VASPI) vs. spot optical density
(SOD) of alpha-1-antitrypsin (AT) spot 111 in the cerebrospinal fluid of patients with peripheral neuropathic pain (n = 11). Spearman’s
rho = − 0.781, p = 0.005

Bäckryd et al. BMC Neurology  (2018) 18:116 Page 10 of 14



might mirror disease-specific processes in the spinal
cord.
Isoform IV_AT1505, which was one of the seven most

discriminating proteins in our earlier study [16], did not
contribute to the PCA models of Aim 1 and did not
appear as a result of Aim 3.
Turning to glycosylated isoforms of AT, subgroup V

(consisting of V_AT1605, V_AT1606, and V_AT2601,
Fig. 1) appears interesting. It is true that these isoforms
have a high percentage of missing values (in 68%, 68%
and 63% of cases, respectively), but the distribution of
glycosylated isoforms of group V differed between groups,
the presence of glycosylated isoforms in group V being
associated with the patients group. Indeed, it has been said
that the pattern of AT glycosylation can be an indicator of
the immune modulatory properties of AT [35]. The draw-
back of “big” glycosylated isoforms, as compared to pro-
tein fragments, is their relatively low ability to cross the
BBB and hence lower probability to be detectable in
plasma. All in all, we think that fragments and/or glycosyl-
ated isoforms of AT seem to have “biomarker potential” in
pain medicine. Further studies, both in CSF and plasma
[35], seem warranted.
Although we chose to focus on AT isoforms in the

present study, future work on the isoforms of AG and
PEDF would be interesting. Concerning AG3409, which
had the highest discriminative power between groups in
our previous study [16], it is notable that it reappears in
the results of Aim 3 in the present paper (Fig. 5). Al-
though this of course might be a false positive finding, it

is nonetheless interesting that the same protein reap-
pears when regressing clinical parameters in the patients
group. Hence, AG3409 discriminated between patients
and healthy controls [16], but was also positively correlated
to VASPI (and had a high VIP when regressing pain dur-
ation). The renin-angiotensin system seems to be involved
in nociception processing [36, 37], and is a potential pain
therapeutic target [38–40]; investigating this particular iso-
form seems to be an important line of future work. Does
this isoform mirror pro-nociceptive activity in the spinal
cord of patients with neuropathic pain?
PEDF3308 was down-regulated in patients in our

previous study [16]. In the present study, this isoform
also reappears in the results of Aim 3, and this even
more forcefully than AG3409 as PEDF3308 had the
second-highest VIP of the model (rank 2 out of 260
proteins). PEDF3308 correlated positively with VASPI
(Fig. 3). PEDF protects against glutamate-caused exci-
totoxicity [41], and we therefore speculate that our
findings could indicate a direct anti-nociceptive activity of
PEDF3308, which would be “consumed” in patients (hence
down-regulated and at the same time positively correlated
to VASPI – those “consuming” more of it having less pain).
This is of course extremely speculative, but seems to make
physiological sense.
Going back to AT, one might wonder why such a

well-known protein would be a specific biomarker for a
pathological pain condition. In this context, it is important
to remember that PTMs are very important physiologically.
PTMs modulate enzyme activity, protein turnover and

Fig. 5 Pain intensity vs AG spot 3409. Scatter plot of Visual Analogue Scale Pain Intensity (0–100 mm) last week (VASPI) vs. spot optical density
(SOD) of angiotensinogen (AG) spot 3409 in the cerebrospinal fluid of patients with peripheral neuropathic pain (n = 11). Spearman’s
rho = 0.81, p = 0.003
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localization, protein-protein interactions, various signaling
cascades, DNA repair, and cell division [5]. It is becoming
increasingly clear that PTMs are important in both health
and disease. For instance, posttranslational glycosylation
patterns are said to be an extremely sensitive indicator of
intracellular conditions, and the fields of glycoproteomics is
emerging as an important contributor in the search for

biomarkers in different medical conditions [42]. Hence,
PTM-patterns are probably important when trying to iden-
tify the molecular “fingerprints” of different pain conditions.
Other important forms of PTMs include acetylation, dea-
midation, hydroxylation, nitration, palmitoylation, phos-
phorylation, sulfation and ubiquitination [5, 43]. Therefore,
looking only at total levels of a particular protein is

Table 4 Proteins associated with pain duration in patients with peripheral neuropathic pain

SPOT NB Pain duration-
VIP

Protein name Bivariate correlation with pain duration

Spearman’s rho p-value

2312 2.31 Zinc-Alpha-2-glycoprotein 0.50 0.120

7712 2.27 Plasminogen 0.82 0.023*

1205 2.26 Complement factor B 0.78 0.005*

7711 2.23 Plasminogen 0.61 0.148

3502 2.16 Hemopexin 0.55 0.082

3309 2.15 Haptoglobin 0.29 0.392

4309 2.14 Haptoglobin 0.71 0.071

2106 2.09 Apolipoprotein E 0.55 0.079

206 2.07 Haptoglobin 0.77 0.072

2601 2.05 Alpha-1-antitrypsin 0.89 0.019*

3106 2.03 Clusterin −0.67 0.024*

3409 1.95 Angiotensinogen −0.39 0.233

409 1.93 Alpha-2-HS-glycoprotein 0.46 0.159

1203 1.86 Haptoglobin 0.52 0.105

7713 1.86 Plasminogen 0.77 0.072

6001 1.82 Alpha-1-antitrypsin −0.54 0.091

2311 1.82 Alpha-1-antitrypsin 0.38 0.245

6611 1.75 Serotransferrin −0.57 0.067

6614 1.73 Serotransferrin −0.58 0.062

6610 1.72 Serotransferrin −0.67 0.023*

3111 1.71 Prostaglandin-H2 D-isomerase −0.54 0.085

412 1.69 Alpha-2-HS-glycoprotein 0.44 0.179

6609 1.67 Serotransferrin −0.72 0.013*

1211 1.67 Haptoglobin 0.30 0.377

3210 1.66 Haptoglobin 0.52 0.098

3010 1.66 Tetranectin −0.21 0.527

2310 1.63 Alpha-1-antitrypsin 0.25 0.466

7403 1.61 Complement C3 0.59 0.055

4105 1.61 Prostaglandin-H2 D-isomerase −0.51 0.113

5306 1.59 Pigment epithelium-derived factor −0.60 0.050

2108 1.57 Apolipoprotein E −0.56 0.073

208 1.56 Haptoglobin 0.35 0.290

8001 1.55 Phosphatidylethanolamine binding protein −0.46 0.154

1111 1.53 Apolipoprotein E −0.55 0.082

Note: Proteins are listed in decreasing order of importance according to Variable Influence on Projection (VIP) of the OPLS model. Only protein isoforms with
VIP ≥ 1.5 are reported (see Methods section). Spot NB refers to the marked protein spot in Additional file 1: Figure S1
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probably often too simplistic, and an “old” and well-known
protein like AT might very well, due to PTMs, mirror
disease-specific processes. The familiarity of AT should not
make one a priori consider it uninteresting as a biomarker.
In the words of Pavlou et al., we have studied “a small

number of samples from diseased and nondiseased groups”
in order to “identify molecules exhibiting discriminating
potential” [17]. To correctly evaluate our findings, it is
important to understand that the present study was not
intended to generate clinical biomarker candidates. If
that had been our purpose, dozens or perhaps hundreds
of samples would have been necessary. Instead, using
the terminology proposed by Pavlou et al., this was an
early discovery phase, pre-clinical exploratory study
[17]. For such studies, in which the aim is to strive to-
wards a better understanding of molecular pathology in
humans, the study design requirements are different
from clinical biomarker studies [20].

Conclusions
On the basis of the findings reported in the present
paper, we present the hypothesis that fragments and/or
glycosylated isoforms of alpha-1-antitrypsin might be
considered as potential biomarkers of the pathophysio-
logical processes in the spinal cord of neuropathic pain
patients. The biomarker potential of protein fragments
should be taken into account by pain researchers. Bio-
markers with high specificity and sensitivity are difficult
to find, and the combinatorial power of a panel of differ-
ent biomarkers has been suggested as a solution this
problem [44]. This is in line with modern systems biol-
ogy [45], the focus lying not on a particular “magic bul-
let” protein but on networks of mutually interacting
proteins. In such a context, the above-mentioned com-
bination of down-regulated N-truncated AT5106 and
up-regulated N-truncated I_AT111 could perhaps be of
value. More research is needed, both in CSF and plasma,
in order to perhaps confirm this hypothesis.

Additional file

Additional file 1: Figure S1. Two dimensional gel electrophoregram of
CSF proteins. The marked spot numbers refer to the identified proteins in
Tables 3 and 4. (JPG 76 kb)
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