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Abstract

autism spectrum versus subgroups (clusters) question.

syndrome fell into one rather than the other cluster.

interventional efforts.

Background: Autism prevalence continues to grow, yet a universally agreed upon etiology is lacking despite

manifold evidence of abnormalities especially in terms of genetics and epigenetics. The authors postulate that the
broad definition of an omnibus ‘spectrum disorder’ may inhibit delineation of meaningful clinical correlations. This
paper presents evidence that an objectively defined, EEG based brain measure may be helpful in illuminating the

Methods: Forty objectively defined EEG coherence factors created in prior studies demonstrated reliable separation
of neuro-typical controls from subjects with autism, and reliable separation of subjects with Asperger's syndrome
from all other subjects within the autism spectrum and from neurotypical controls. In the current study, these forty
previously defined EEG coherence factors were used prospectively within a large (N =430) population of subjects
with autism in order to determine quantitatively the potential existence of separate clusters within this population.

Results: By use of a recently published software package, NbClust, the current investigation determined that the 40
EEG coherence factors reliably identified two distinct clusters within the larger population of subjects with autism.
These two clusters demonstrated highly significant differences. Of interest, many more subjects with Asperger’s

Conclusions: EEG coherence factors provide evidence of two highly significant separate clusters within the subject
population with autism. The establishment of a unitary “Autism Spectrum Disorder” does a disservice to patients
and clinicians, hinders much needed scientific exploration, and likely leads to less than optimal educational and/or

Keywords: Autism spectrum disorder (ASD), Asperger’s syndrome (ASP), EEG coherence factors, Connectivity,
NbClust, K-means, Hierarchical, Cluster analysis, Discriminant analysis

Background

The DSM-5 [1] summarizes that individuals on the
autism spectrum exhibit problems involving interaction
and communication with other individuals, show repeti-
tive behaviors and restricted interests, and manifest be-
havior issues interfering with school, work, and/or
multiple other life endeavors. The move from DSM-3 [2]
to DSM-4 [3] and most recently DSM-5 [1] as diagnostic
standard reflects a gradual condensation of a number of
autism-related clinical entities under the rubric of Autism
Spectrum Disorder (ASD). These include infantile autism,
atypical autism, pervasive developmental disorder not
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otherwise specified or PDD-nos, and most recently Asper-
ger’s syndrome [4]. This diagnostic “simplification” was
welcomed by some yet quite concerning to others, as
previously reviewed [5]. As suggested by Kienle et al. [6],
“...the issue of an empirically reproducible and clinically
feasible differentiation into subgroups must still be raised.”
Indeed, in 2016, Pruett and Povinelli [7] published a wist-
ful ‘Commentary’ in which they hypothesized that the
usual rapid and automatic recognition of individuals on
the autism spectrum resulted from our human “evolved
sensitivity for species-typical ranges of social relating”.
The authors further postulated that “social spacing”,
“quality of eye contact”, and “timing of communicative
exchange” constitute three primary variables and that they
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may form a recognizable set of “clusters” within the realm
of human behavior.

A review of the literature from 1994 to 2018 reveals
nine publications using cluster analysis to demonstrate
quantitatively defined groupings within subjects diag-
nosed with autism spectrum disorder (ASD) [6, 8—15].
Eight papers used structured neurobehavioral assess-
ments of various types [2, 3, 16-24] and one relied upon
MRI data. Four studies reported solutions involving two
clusters, one reported both two and three cluster
solutions, one study reported a three cluster solution,
two reported a four cluster solution, and one reported a
five cluster solution.

It is notable, that all studies summarized above suc-
ceeded in identifying clusters. However, the number of
underlying clusters identified varied, although the two
cluster solution was noted most often. As an ensemble,
the studies serve to suggest that ASD may well comprise
a varying number of discrete sub-populations rather
than exist on a continuum.

The varying number of clusters reported in these
different studies may reflect the unique characteristics of
the population under study, differing choices of variables
selected to represent subjects and/or differing cluster
methodologies utilized. The two most commonly used
cluster methods, hierarchical and K-means algorithms
rely upon apparent ‘satisfactory’ cluster separation by
means of the clinical/neuropsychological difference
between or among subjects within differing clusters.
K-means clustering, hierarchical clustering, and combi-
nations of these two fundamental methods, fail to deter-
mine quantitatively the optimal cluster number. For
instance, the K-means approach to clustering “...requires
users to specify the number of clusters to be generated.
One fundamental question is: How to choose the right
number of clusters” [25], p 39. Similarly, “...one of the
problems with hierarchical clustering is that is does not
tell us how many clusters there are...” [25], p 74.

The current study employed one of the first compre-
hensive software approaches to objectively establish
cluster number, namely NbClust [25]. It is specifically
designed to provide an objective means, i.e. independent
of investigator choice, to identify the ‘optimal’ cluster
number within a population.

Thus, the main goal of the current study was to deter-
mine the feasibility of delineating objective, EEG-based,
clusters among children diagnosed with ASD. The
underlying hope is that successful clustering might
ultimately lead to better clinical, cost effective, specific
diagnoses of subtypes of Autism and the creation of
more specific interventions as well as a method to test
the effectiveness of such interventions, be they pharma-
cological, behavioral or other. The multiplicity of poten-
tial approaches to clustering and their complexities have
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been succinctly reviewed by Jain et al. [26] and more
recently by Charrad et al. [25]. Key issues that arise
when employing cluster analysis are as follows: (1) What
clustering technique to use (typical choices are K-means
and hierarchical); (2) How many clusters to form (typic-
ally required prior to analysis initiation); and (3) How to
determine the relative “significance” of resulting cluster
configurations (internally by statistics and/or externally
by association with one or more symptom complexes).
The software package NbClust [25] addresses these three
issues and was used in this study to elucidate the cluster
structure within a large group of ASD subjects each
represented by 40 previously derived [27] EEG-based
coherence factors.

The main hypothesis of the study thus was that there
are definable subgroups (clusters) of children within aut-
ism. It was hypothesized that children in one cluster will
be different from children in other groups (clusters), and
more similar among each other within a cluster, than
across clusters. A secondary hypothesis states that EEG
coherence is a productive means for the establishment
of such stable clusters of children within the autism
population.

Methods
Overview

(1) Utilize for clustering 430 subjects with ASD, who
had been studied previously for a different purpose
[27].

(2) Utilize as variables for clustering all 40 EEG
coherence factors objectively generated previously
in the differentiation of subjects with ASD and
neurotypical control (CON) group subjects [27].

(3) Determine the ASD cluster number within the 430
previously studied subjects with ASD by use of the
recently developed NbClust software package [25, 28].

(4) Compare NbClust results with independently used
hierarchical and K-means clustering techniques.

(5) For both hierarchical and K-means clustering algo-
rithms use initial default parameters, and then initiate
by use of NbClust all thirty available methods in
order to determine the optimal cluster number, asses-
sing up to 15 possible cluster outcomes by an object-
ive ‘voting process’, which is part of NbClust [25].

(6) Utilize the ‘voted’ as best outcome cluster
configuration to identify each ASD subject’s cluster
association/identity.

(7) Evaluate the internal validity of the resulting
clusters within multivariate factor space by using
univariate and multivariate statistics (discriminant
function analysis - DFA with jackknifing and
split-half replication).
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(8) Explore by use of multigroup DFA the
relationship among derived clusters and a
neurotypical control (CON) population
(not used for clustering). And.

(9) In order to explore external cluster meaning,
evaluate the relationship, i.e., multivariate
positioning, of previously studied ASP subjects [5],
who were not part of the ASD population used to
form EEG-based factors and were not included in
the clustering process.

Subjects previously studied

The EEG coherence factor data used for this study were
derived from a population of 984 previously studied 2 to
12 year old subjects [27]. Of these subjects, 430 were
representatives of the Autism Spectrum Disorder group
(ASD) and 554 constituted the neurotypical control
group (CON).

As previously detailed [27], the ASD population had
EEGs to rule out epilepsy, seen in up to 30% of certain
ASD patients [12, 29]. ASD referrals for the prior study
came from pediatric psychologists, psychiatrists, or
neurologists at Boston Children’s Hospital (BCH) or
from another Harvard associated teaching hospital.
Diagnosis of ASD relied upon the DSM [1, 30] and/or
ADOS [31, 32] criteria confirmed by clinical histories
and evaluation. ASD exclusion criteria included: (1)
Coexistent neurologic syndromes with autistic-like fea-
tures, (2) Seizure disorders or epileptic encephalopathy
(infrequent and/or isolated spikes did not cause exclu-
sion); (3) Primary diagnoses of global developmental
delay or dysphasia; (4) Clinical uncertainty as to the
diagnosis of ASD; (5) Medication being taken at the time
of study; (6) Any processes that might alter EEG change
such as hydrocephalus, hemiparesis, or other syndromes
often associated with abnormal brain development.

As also previously outlined [27], the CON population
was selected from an extensive study pool archived by
the BCH Developmental Neurophysiology Laboratory
(DNL). CON subjects had been utilized as controls for
numerous research projects over many years. CON
subjects constituted a comparison group of children se-
lected to be normally functioning yet avoiding creation
of a ‘super-normal’ population. All CON group subjects
were living at home with, considered normal by parents
and identified as functioning within the normal range on
standardized assessments from respective research
studies. Previously delineated CON exclusion criteria
included: (1) Diagnosed with or suspected of psychiatric
or neurologic illness; (2) Abnormal neurological examin-
ation; (3) Seizure disorder (Rare EEG spikes were
permitted); (4) Noted at study time to manifest autistic
features; (5) Receiving medications.
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Summary of the EEG data collection protocol, the analytic
methods previously utilized, and the prior study results

Data for all subjects were digitally recorded at BCH, in
the resting awake state following placement of 24 gold
cup electrodes (Fig. 1) with EEG filtered from 1 to 100
Hz at 256 Hz sampling rate. More recent data were
recorded at a higher spatial density (128 channels) and
temporal sampling rate (512 Hz). These data were soft-
ware down-sampled to conform to the earlier recorded
data as previously detailed [27]. From 8 to 20 min of
artifact-free waking data were collected. As EEGs had
been primarily collected to rule out epilepsy, these
records usually contained additional time for the appear-
ance of drowsiness and/or sleep as epileptiform dis-
charges are often more frequent during these periods
[33]. No subjects were included if EEG records were
deemed diagnostic of or consistent with an underlying
seizure disorder. Coherence analyses were restricted to
waking epochs. Segments of EEG containing obvious
artifacts were eliminated by visual inspection. Remaining
eye blink and eye movement artifacts, often prominent
even during the eye closed state, were removed by
means of a source component technique [34, 35] imple-
mented by the BESA™ software package. EEG data were
analyzed in Laplacian montage [36-38] with coherence
calculated [36] between all pairs of 24 electrodes (Fig. 1)

Subset of 10-10 EEG Electrodes

Fig. 1 Standard EEG Electrode Names and Positions. Legend: Head
in vertex view, nose above, left ear to left. EEG electrodes: Z: Midline:
FZ: Midline Frontal; CZ: Midline Central; PZ: Midline Parietal; OZ: Midline
Occipital. Even numbers, right hemisphere locations; odd numbers,

left hemisphere locations: Fp: Frontopolar; F: Frontal; C: Central; T:
Temporal; P: Parietal; O: Occipital. The standard 19, 10-20 electrodes
are shown as black circles. An additional subset of five, 10-10
electrodes are shown as open circles. This figure was first published in
a 2012 autism manuscript by the current authors [27] and is shown
with permission of these authors and publisher, BMC Medicine
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Fig. 2 Optimal Cluster Number by Hierarchical Clustering and Program NbClust. Legend: NbClust produced histogram of up to 15 possible
cluster groupings formed by Hierarchical clustering. Atop each vertical bar is the total number of the 30 indices used to estimate the optimal
cluster grouping. Note that 17 of the 30 indices indicate the two cluster configuration as “optimal”. Cluster configurations never selected are

omitted from the X axis as their frequency would be zero

in 16, two Hz spectral bands from 1 to 30 Hz resulting
in 4416 unique spectral values per subject. Impact of
any remaining eye blink and muscle artifact upon these
coherence measures were removed by multiple regres-
sion using frontal slow delta and high frequency
frontal-temporal EEG as indicators (used as independent
variables in multiple regression) of residual eye and
muscle artifact respectively [27, 39, 40].

Reduction of the 4416 coherence variables was man-
aged by Principal Components Analysis (PCA). The first
40 factors accounted for 50.87% of the total variance.
Age effects were removed from the 40 coherence var-
iables generated on the total sample by regression of
age at study. Factors remained statistically uncorre-
lated after age regression. These 40 factors were used
to separate the CON from ASD groups by discrimin-
ant function analysis (DFA); results were highly sig-
nificant (p <0.0001) [27]. More importantly, when
DFA was used in 10 randomly formed split half repli-
cations, the average ASD group classification success
was 86.0% and for the CON group, 88.5%. For each
split half replication, classification success was also
highly significant (p <0.0001). It was concluded that “...
consistent differences exist between the CON and ASD
groups” [27].

Cluster analysis, current study

Clustering is a technique of “unsupervised learning” that
partitions subjects/objects into groupings or “clusters”
such that the subjects/objects within a cluster are more
similar to others within the cluster than to subjects in
other clusters. The NbClust cluster analysis program
[25], within the extensive “R” analytic and display
software packages [28, 41], was selected for the purpose
of objective, unbiased estimation of the optimal number
of clusters within a data set, a primary issue when
performing cluster analysis. NbClust, a recent addition
to the R programming and analyses software packages,
provides 30 indices to determine the “best” number of
clusters in a data set by objective, data-driven, “ma-
jority vote”. NbClust also provides [28] both hierarch-
ical and K-means clustering as options. The 40 EEG
coherence factors developed and described in a prior
study [27] and the data from the prior ASD group
were utilized as variables for cluster analysis in the
current study.

Internal validation of clusters, once delineated, was
assessed by three criteria: First, that a majority of the 40
factor values differed between clusters by T-test; Second,
that the clusters differed among/between themselves by
two-group discriminant function analysis (DFA - see
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Fig. 3 Optimal Cluster Number by K-means Clustering and Program NbClust. Legend: An NbClust produced histogram of up to 15 possible
cluster groupings formed by K-means clustering. Atop each vertical bar is the total number of the 30 indices used to estimate the optimal cluster
grouping. Note that 10 of the 30 indices indicate the two cluster configuration as “optimal”. Cluster configurations never selected are omitted
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below); and Third, when the CON group was added to
the newly defined ASD clusters that the CON group and
the created ASD clusters respectively remained separate
by multi-group DFA. External cluster validation, in the
absence of available, consistent neuropsychological and/
or other domain-derived variables for the ASD subjects,
was limited in the current study to the passive
localization of previously evaluated [5] EEG coherence
factor data from 26 ASP subjects within the multivariate
space of the CON and ASD subject clusters.

Discriminant function analysis (DFA) and other statistical
procedures

All statistical analyses, aside from PCA and cluster ana-
lyses, utilized the BMDP2007™ software package [42].
Program 7M (P7M) was used for the two and three
group stepwise discriminant function analyses (DFA).
P7M creates new canonical variables for maximal
subject group separation. For a two group analysis one
discriminant function is produced and for a three group
analysis two discriminant functions are produced. DFA
defines the significance of a group separation, summa-
rizes the classification of each participant, and provides

an approach for the prospective classification of individ-
uals not involved in creation of the discriminant rule
[43, 44]. In order to estimate prospective classification
success, the jackknifing technique, also referred to as the
leaving-one-out process, was utilized. By this method, a
discriminant function is formed on all individuals but
one. The left-out individual is subsequently classified.
This initial left out individual is then folded back into
the group (hence ‘jackknifing’), and a different indi-
vidual is left out, a process which is repeated until all
individuals have been left out and classified by a clas-
sification rule created on the non-left out subjects.
The measure of classification success is then based
upon a tally of the correct classifications of the
left-out individuals. An alternative technique to esti-
mate prospective classification success was also uti-
lized, namely split-half replication. By means of a
random number generator, internal to P7M, the entire
population was randomly divided into a training-set
and a test-set. Classification rules were generated on
the training-set and evaluated in terms of classifica-
tion on the corresponding test-set. Such split-half rep-
lication was repeated five times.
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Table 1 T-test Between Clusters1 (C1) and 2 (C)
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Table 2 Demographic Differences Between Clusters 1 and 2

FACTOR C1 Value C2 Value T Value p

1 -0.1105 0.0346 1.96 ns

2 0.1322 0.2209 —2.65 0.0084
3 —-0.2999 0.0101 -3.83 0.0002
4 0.3345 -0.3523 8.19 0.0001
5 0.0442 -0.0152 1.16 ns

6 0.0269 03012 -3.36 0.0001
7 0.1229 -0.0814 -037 ns

8 0.1687 0.1176 —244 0.0154
9 —-0.0398 —-0.0032 -052 ns

10 0.1512 -0.1720 3.32 0.0010
" -0.1320 0.0109 -1.67 ns

12 0.1168 —-0.1138 3.16 0.0017
13 0.1116 —0.2466 7.09 0.0001
14 -0.0822 -0.0759 -0.11 ns

15 -0.1917 —0.6485 5.98 0.0001
16 02733 0.1007 1.62 ns

17 -0.1162 —0.2969 193 ns

18 —-0.2669 0.0778 —-3.55 0.0004
19 -0.1386 0.2480 -338 0.0003
20 -0.0413 0.0654 2.23 0.0262
21 0.0318 0.0997 -063 ns

22 0.2652 —-0.0057 495 0.0001
23 —-0.0283 0.0393 -0.70 ns

24 03523 0-721 348 0.0006
25 —-0.2630 0.0748 —444 0.0001
26 -0.1591 0.1574 —4.22 0.0001
27 -0.1742 0.3051 -559 0.0001
28 —-0.0803 0.1718 —-261 0.0095
29 -0.1108 —0.0029 —-145 ns

30 -0.0764 0.2491 —-3.95 0.0001
31 —-0.0431 0.2026 -237 0.0185
32 -0.1068 0.0605 -1.86 ns

33 -04215 0.2647 -836 0.0001
34 0.1884 0.0246 191 ns

35 -0.3479 -0.0168 -4.03 0.0001
36 02216 0.0621 1.87 ns

37 0.1253 —-0.0280 1.79 ns

38 0.1987 -0.1376 567 0.0001
39 03162 —-0.0619 850 0.0001
40 -0.2028 -0.1567 0.58 ns

ns not significant

A. Gender Difference

Group Male Female Total
1 146 23 169
2 215 46 261

Total 361 69 430

Pearson ChiSquare=1.228; df=1; p=ns
B. Handedness

Group Right Left Total
1 159 10 169
2 254 7 261

Total 423 17 430

Pearson ChiSquare=2.827; df=1; p=ns
C. Age at EEG study

Group Mean Age Yrs Std Dev
@ 4.3769 +/— 2.9645
Q2 4.8548 +/— 2.8444

Student's T=167 p=ns

ns not significant

Results

Cluster creation

NbClust was performed on 430 ASD subjects repre-
sented by 40 factor variables [27] using the hierarchical
clustering method and asking for the development of up
to 15 clusters. Results are shown in histogram form, see
Fig. 2. Note that 17 of the 30 assessments identified a
2-cluster solution and by the majority rule of the
hierarchical approach this was determined the optimal
cluster configuration. NbClust was repeated now using
K-means clustering with results shown in Fig. 3. NbClust
once more indicated as optimal the 2-cluster-configuration;
10 of the 30 assessments ‘voted for this outcome. Since
both clustering methods chose the 2 cluster solution as

Table 3 Separation of ASD Clusters 1 and 2 by Discriminant
Function Analysis (DFA)

Group Percent No. of Cases Classified into Clusters
correct a )
Initial Classification Matrix
al 94.7 160 9
2 96.6 9 252
Total 95.8

Jackknifed Classification Matrix

@ 929 157 12
Q 95.8 11 250
Total 94.7

Nineteen (19) factor variables were used, presented here in the order of
selection: Factors 33, 39, 38, 30, 35, 27, 6, 19, 15, 25, 20, 18, 22, 4, 13, 26, 37,
10, and 36
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optimal, this configuration was taken as most representative
of the full ASD population. Moreover, as hierarchical
clustering produced the more definitive 17 of 30 ‘vote; the
‘best’ two cluster solution as formed from hierarchical clus-
tering, was accepted. The first cluster, referred to as Cluster
1 or C1, comprised 169 subjects and the second cluster,
referred to as Cluster 2 or C2, contained 261 subjects.

Separation between clusters; factors and demographic
variables

Table 1 shows a two group t-test for each of the 40
factor variables between clusters C1 and C2. Of the 40
factors, 13 achieved highly significant cluster differences
of p<0.0001, and 11 achieved significant differences
with p values ranging from p<0.0262 to <0.0002.
Sixteen tests showed insignificant p values. Thus, 60%
of the factors manifested significant between-clusters
differences, with 32.5% being highly significant. As
shown in Table 2, there were no statistically signifi-
cant differences between the two clusters on the basis
of gender, as tested by Chi-square, handedness, also
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tested by Chi-square, or age in years at time of study,
tested by t-test.

Separation of two ASD clusters by two-group DFA

Stepwise DFA (P7M) was performed between ASD clus-
ters C1 and C2 on the initial basis of all 40 Factors as
potential discriminating variables. Nineteen factors were
selected (Table 3). Coherence loadings on the 19 DFA
selected factors are illustrated in Fig. 4. In order to
establish the sign, plus for positive, minus for negative,
of the differential coherence loading for coherences
associated within a given factor (red = positive or blue =
negative) three analytic steps were considered for each
factor: (1) The sign of loading of coherence upon a given
factor at time of factor creation; (2) The sign of the
factor loading upon the generated discriminant function
variable; and (3) The sign of the C1 and C2 group out-
come positions along the discriminant function axis.
Note that the C1 - C2 difference involved factors show-
ing both increased (12 red) and decreased (7 blue)
coherences. No factor showed a combination of both

Facw Hz

19 Coherence Factors that separate Clusters 1 and 2.

Red indicates increased coherence for Cluster 1.
Blue indicates decreased coherence for Cluster 1.

Fig. 4 Graphic Representation of 19 Coherence Factor Loadings Used in Separating Clusters 1 and 2. Legend: EEG coherence factor loadings.
Heads in top view, scalp left to image left, nose above; Factor number is above heads to left and peak frequency for factor in Hz is above to right.
Lines indicate top approximate 15% coherence loadings per factor: Red Lines = increased coherence in Cluster 1; Blue Lines = decreased coherence in
Cluster 1. Involved electrodes are shown as white circles. Uninvolved electrodes are not shown; they are blackened-out within the superior scalp area
and greened-out for scalp electrodes. Factors are shown in numerical order. See text for factor selection order in discriminant analysis
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increased and decreased coherence. Two group classifica-
tion by Wilk’s lambda was highly successful (0.342; F =
41.4; DF 19,410; p < 0.00001). Overall subject classification
success was 95.8% directly and 94.7% by jackknifing.
Graphic separation between the two cluster groups by the
resulting discriminant function is shown in Fig. 5.

Five split half replications were performed by DFA
between clusters C1 and C2. The population split into
test set and training set was performed by means of a
random number generator. Results are shown in Table 4.
Note that average correct classification of the left out
‘Test Set’ C1 group was 86.36%, and the left out ‘Test
Set’ C2 group was 91.79%. Thus, by both jackknifing and
by five split half replications there was strong evidence
for successful prospective C1/C2 group classification.

Separation among the two ASD clusters and the CON
Group by three-group DFA

Stepwise DFA (P7M) was performed among ASD clus-
ters C1, C2 and control group CON on the initial basis
of all 40 Factors as potential discriminating variables
(Table 5). Thirty-one factors were selected for use by
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DFA. Overall subject classification success among the
three groups was 87.4% directly and 85.3% by jackknif-
ing. Overall classification and the three separate pair
comparisons were all statistically highly significant at p
<0.00001 for each of the four analyses. Graphic separ-
ation among the three groups (CON, C1, C2) that re-
sulted from this three group DFA is illustrated in Fig. 6.
The two discriminant functions served as X and Y axes.

Passive classification of subjects with Asperger’s
syndrome (ASP)

Stepwise DFA was repeated among the three groups C1,
C2, and CON on the basis of all 40 Factors. To this
three-group population a fourth group of 26 previously
studied subjects with Asperger’s syndrome (ASP) [5] was
added as input data and set to be passively classified by
the resulting C1-C2-CON based discriminant functions.
The ASP subjects did not participate in the creation of
the two discriminant variables. Results demonstrated
that 19 of the 26 ASP subjects were passively classified
as belonging within the C2 cluster and six within the C1
cluster; of these six subjects two fell into the C1-C2

40-

30-

» COUNT

0~

10-

-5.0 25

classification is approximately 95% correct by jackknifing (see text)

C1-C2 ASD cluster distribution
along two group Discriminant Function
following DFA.

00 28
DISCRIMINANT FUNCTION SCORE

Fig. 5 C1 and C2 Cluster Groups Along 2-Group DFA by Discriminant ScoreLegend: C1 and C2 histograms (red = C1, blue/green = C2) with X-axis
the 2 group discriminant score. Note minimal overlap. Separation by Wilk's Lambda is significant (p < 0.00001) and overall individual subject
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Table 4 C1 vs. C2, Five Split-Half Replications

Replication 1
Training Set (n=217)
C1: 84/89 correct, 94.38%
(C2: 121/128 correct, 94.53%
Replication 2
Training Set (n = 203)
C1: 80/84 correct, 95.24%
C2: 110/119 correct, 92.44%
Replication 3
Training Set (n =228)
C1: 78/85 correct, 91.76%
(C2: 133/143 correct, 93.01%
Replication 4
Training Set (n=212)
C1: 83/86 correct, 96.51%
(C2: 120/126 correct, 95.24%
Replication 5
Training Set (n=218)
C1:77/84 correct, 91.67%
(C2: 129/134 correct, 96.27%

Test Set (n=213)
C1:72/80 correct, 90.00%
C2: 124/133 correct, 93.23%

Test Set (n=227)
C1:75/85 correct, 88.24%
(C2: 130/142 correct, 91.55%

Test Set (n=202)
C1: 68/84 correct, 80.95%
C2: 111/118 correct, 93.07%

Test Set (n=218)
C1:71/83 correct, 85.54%
C2: 117/135 correct, 86.67%

Test Set (n=212)
C1: 74/85 correct, 87.06%
C2: 120/127 correct, 94.49%
Average Correct Test Set
C1=286.36%
C2=91.80%

Table 5 Separation of ASD Clusters 1 and 2 and the Control

Group (CON) by 3 Group DFA

Group Percent No. of Cases Classified into Group
correct a ) CON

Initial Classification Matrix
1 85.8 145 14 10
(@) 88.1 1 230 20
CON 876 41 28 487
Total 874

Jackknifed Classification Matrix
@ 81.7 138 16 15
2 86.6 15 226 20
CON 853 49 33 474
Total 853

Thirty-one (31) factor variables were used in the following order: 15, 17,
4,33,2,6,27,24,16,30,35, 1,19, 40, 31, 22, 36, 13, 7, 39, 3, 25, 9, 38, 26,

8,28,10,18, 12, 21.

Significance of Classification Probability:

Overall F=2561 DF =62, 1906 p <0.00001
ClxC2 F=1788 DF =31, 953 p <0.00001
C1 x CON F=20.77 DF =31, 953 p <0.00001
C2 x CON F=36.52 DF =31, 953 p <0.00001
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cluster border zone. One fell within the CON group.
These results are illustrated in Fig. 7.

Discussion

Results show that 430 subjects diagnosed as being on
the autism “spectrum” and represented by 40 EEG
coherence factors [27], fell into two distinct clusters.
These two ‘autism clusters’ statistically differed from one
another and, in turn, statistically differed from 554 sub-
ject neuro-typical control group subjects, not involved in
the clustering process. Notably the 40 utilized EEG
coherence factor variables had been objectively derived
[27] and a completely objective data-driven variable
selection was applied. Furthermore, choice of the opti-
mal cluster number was also objectively determined by
use of a relatively recent software package, NbClust [25].
This program was instructed to form up to 15 clusters
and to establish the optimal cluster configuration on the
basis of the 30 methods [25] included in the program.

Finally, NbClust was run twice, first utilizing the
hierarchical clustering technique and second utilizing
the other commonly used K-means technique. Both
techniques ‘voted’ the two cluster configuration as opti-
mal; the choice was more definitive when hierarchical
clustering was used. Thus, the optimal two cluster solu-
tion was selected on the basis of objectively derived EEG
measures of brain connectivity.

In order to explore the potential clinical significance
of the two autism clusters, advantage was taken of a
prior study [5] that contrasted the control, ASD, and
ASP populations and that had shown that ASP subjects
were closer to the ASD population than the neurotypical
control population, and also that ASP subjects were
statistically separable and distinctly different from the
ASD population. For the current study, these previously
studied 26 ASP subjects were represented by the 40 EEG
coherence factor variables and were utilized to deter-
mine whether these ASP subjects would passively fall
within one or the other of the newly formed clusters.
Notably these ASP subjects had not been utilized in the
original cluster formation. As Fig. 7 shows, the majority
of ASP subjects were within or close to the Cluster 2 do-
main, which suggests that C2 may be primarily associ-
ated with those subjects manifesting Asperger-like
behavioral characteristics. It is of note that despite the
multiple variable types and differing methods for cluster-
ing in the literature, a prominent two cluster distribution
of autistic characteristics has been observed repeatedly
by others [6, 8, 11, 14, 15].

A significant limitation of the study is the lack of ex-
ternal validation by similarly extensive subject data from
other relevant domains, such as neuro-psychological
evaluation as well as autistic specific evaluations such as
the ADOS [32] or ADI-R [45], MRI [9, 46—-49], genetic/
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epigenetic testing [50-57], and prolonged sleep EEG re-
cordings for detection of epileptiform activity [29, 58—61].

The future establishment of correlations among such
additional brain-based data with the EEG coherence-
based findings described in this manuscript should be
very helpful in further validating the EEG-based
subgroups, and should facilitate interpretation of the
coherence data by clinicians and scientists alike. The ab-
sence of correlative data in the current study does not
invalidate the future use of the current data and findings
for such correlative studies. For example it was possible
in the current study to insert 26 Asperger’s patient
data within the three group discriminant analysis de-
scribed here. As also previously reported, autistic pa-
tients could be additionally classified as also having
attention issues using a discriminant, developed on a
different population with attention disorders. Thus it
was possible to explore attention disability within
autism [40] by means of EEG data. Future studies
utilizing the current study’s results would only require
that subjects have waking EEG data. Such studies are
anticipated.

It is also important to clarify that the current demon-
stration of two neurophysiological clusters within the
autism spectrum does not preclude the possibility of
further, relevant autism subdivisions. For example in the
future, as the neurodevelopmental characteristics of
Cluster 1 and 2 are explored, there may prove to be add-
itional clinically relevant sub-populations within or even
across these two clusters. .

Conclusion

Objective brain derived EEG coherence factor data
strongly support the proposition that the autism dis-
order should not be seen as a continuous spectrum [1]
but likely is formed from at least two distinct subpopu-
lations. This is important since the ‘spectrum versus
clusters’ issue goes beyond academic taxonomy and has
a number of real world consequences: (1) For example,
moving Asperger’s syndrome subjects into the autism
spectrum disorder allows some US schools to develop
and offer a single autism educational program that is ori-
ented towards management and teaching of the ‘typical’
autistic child of limited verbal ability, who may present
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with behavioral issues. This may leave out or otherwise
disadvantage children with Asperger’s Syndrome, who
present with specific and often different behavioral and
educational issues altogether and typically profit from
more individually-tailored education. (2) On the other
hand, in clinical autism research (e.g., neuro-behavioral
evaluations, MRI based studies) it is often much easier
to recruit and successfully study subjects with Asperger’s
Syndrome or others who are high-functioning. However,
results of such studies may be inappropriately general-
ized as findings characteristic of the entire autism
spectrum. (3) The multiple different findings resultant
from genetic and epigenetic studies of autism [54, 62—65]
also contradict a unitary perspective on autism. Important
correlational findings may be lost when all autism is
treated as a single entity. It prevents identification of
distinct subgroups based upon clinical insights, and/or
neurobehavioral parameters, and/or direct brain parame-
ters (as from MRI and EEG).

In addition EEG, a classic and relatively inexpensive
non-invasive test, is found to be reasonably well tolerated
by children with various forms of ASD and should be
considered for inclusion in future studies of autism and of
other neurobehavioral disorders [5, 27, 40, 66, 67].

As previously discussed [27] the authors believe that
in clinical practice diagnosis of ASD should follow
the DSM-5 criteria, and should be made by clinicians
with special training in this area (e.g., neurologists,
psychiatrists, psychologists) by use of readily available

assessments such as the ADI-R [45]. EEG coherence
study data may best serve as adjunctive, confirmatory,
and/or exploratory information. At this point they are
especially useful regarding the discovery of clinically
relevant autism sub-populations.
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