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Abstract

and the monitoring of complications.

distribution, Calcium homeostasis.

Background: Primary periodic paralysis is characterized by recurrent quadriplegia typically associated with

abnormal serum potassium levels. The molecular diagnosis of primary PP previously based on Sanger sequencing of
hot spots or exon-by-exon screening of the reported genes.

Methods: We developed a gene panel that includes 10 ion channel-related genes and 245 muscular dystrophy-
and myopathy-related genes and used this panel to diagnose 60 patients with primary periodic paralysis and
identify the disease-causing or risk-associated gene mutations.

Results: Mutations of 5 genes were discovered in 39 patients (65.0%). SCN4A, KCNJ2 and CACNAT1S variants
accounted for 92.5% of the patients with a genetic diagnosis.

Conclusions: Targeted next-generation sequencing offers a cost-effective approach to expand the genotypes of
primary periodic paralysis. A clearer genetic profile enables the prevention of paralysis attacks, avoidance of triggers
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Background

Periodic paralysis (PP) is characterized by episodes of
muscle weakness that occur at irregular intervals due to
skeletal muscle ion channelopathies. This highly hetero-
geneous group of muscle diseases can be further divided
into primary and secondary disorders. The characteris-
tics of primary PP are that they are genetic disorders,
usually presenting before the age of 20, often with more
than one affected generation and with the exclusion of
other diseases that can alter serum potassium levels. The
most common genetic causes of primary PP include
genes, such as calcium voltage-gated channel subunit
alpha 1S (CACNAIS), sodium channel o subunit
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(SCN4A) and potassium voltage-gated channel subfamily
J] member 2 (KCNJ2), that encode voltage-gated chan-
nels in muscle membranes that generate or sustain
membrane potentials [1]. Furthermore, missense muta-
tions in Ryanodine receptor type 1 (RYR1), which dir-
ectly couples with a voltage-gated L-type Ca®* channel
(dihydropyridine = receptor, DHPR) to generate
excitation-contraction and promote the rapid and gener-
alized release of calcium within myofibrils, were recently
identified in patients with PP [2, 3].

Prior to the development of next-generation sequen-
cing (NGS), the molecular diagnosis of primary PP had
been based on Sanger sequencing of hot spots or
exon-by-exon screening of the reported genes. This ap-
proach is time-consuming and, most importantly, is con-
fined to the known genes and thus is less likely to
identify cases with more complicated genetic etiologies.
The targeted NGS technique has been employed to es-
tablish molecular diagnosis in patients with primary
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myopathies and muscular dystrophies during the past 5
years [4-6]. Targeted NGS is considered as a
cost-effective strategy for muscle disorders with hetero-
geneous genetic causes and allows us to broaden the
phenotypic spectrum of hereditary myopathies based on
newly identified mutations.

Here, we described the application of a targeted
NGS panel that includes 10 ion channel-related genes
and 245 muscular dystrophy and myopathy-related
genes to obtain a genetic diagnosis in a cohort of 60
Chinese Han patients with clinically diagnosed pri-
mary PP.

Methods

Patient ascertainment

This study was approved under the guidelines of the In-
stitutional Ethics Committee of the Huashan Hospital,
and conducted according to the principles in the Declar-
ation of Helsinki. Written Informed consent was ob-
tained from each participant for providing the clinical
information and bio-sample for further analysis. For
those participants under the age 18, the written consent
was signed by their parents. The recruitment of patients
with clinically defined primary PP was based on the
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following criteria: 1) age of onset <35 years; 2) recurrent
muscle weakness =2 times; and 3) a significant decline
in the compound muscle action potential (CMAP) amp-
litude =30% of the baseline value in long exercise test
(LET) (Fig. 1). The standard procedure of LET was pre-
viously described [7]. Serum potassium levels during the
attacks either decrease, remain at a normal level (3.5—
5.5 mmol/L) or increase. Patients with hyperthyroidism,
adrenoid gland dysfunction and renal tubular acidosis
are excluded in this study. Taken together, we included a
total of 60 patients from 53 pedigrees for further genetic
screening with NGS.

Targeted next-generation sequencing
Genomic DNA was extracted from peripheral blood
using the High Pure PCR.

Template Preparation Kit (Roche, Basel, CH) according
to the manufacturer’s instructions. The DNA fragments
were enriched by performing solution-based hybridization
capture, followed by sequencing using an IlluminaMiseq
platform (Illumina, San Diego, CA, USA) with the 2 x 300
bp paired-end read module. The hybridization capture
procedure was performed using the SureSelect Library
Prep Kit (Agilent, Santa Clara, CA, USA). The defined
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Fig. 1 Inclusion and diagnostic strategy for targeted NGS in patients with primary PP. TPP: thyrotoxic periodic paralysis. CMAP: compound muscle
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target regions included 5060 regions containing 255 genes
known to cause muscle disorders, including ion
channelopathies, limb-girdle muscular dystrophies,
Duchenne/Becker muscular dystrophies, congenital
muscular dystrophies, metabolic myopathies, congenital my-
opathies and distal myopathies (Additional file 1 Table S1).
The oligonucleotides covered all coding exons, UTR regions
and intron-exon boundaries, including at least 10 intronic
nucleotides. The DNA was first quantified using Qubit 2.0
(Thermo Fisher Scientific, Waltham, MA, USA). In total,
3 ug of genomic DNA were sheared by sonication using a
DiangenodeBioruptor® Plus and hybridized using Biotinyl-
ated RNA oligonucleotide baits. The captured fragments
were removed from the solution using streptavidin-coated
magnetic beads (Dynabeads® MyOne™ Streptavidin T1,
Thermo Fisher Scientific) and subsequently eluted. The
resulting libraries were quantified by qPCR before proceed-
ing to the Illumina Miseq platform.

Variant analysis and interpretation

After the Miseq sequencing, the raw reads from each
sample were sorted according to the index sequences.
The adapter sequences were trimmed using cutadapt
(http://code.google.com/p/cutadapt/). SolexaQA  was
used to remove the low-quality bases (< Q20). The clean
reads were aligned to the human reference genome
(hg19) using the Burrows—Wheeler Aligner (BWA; ver.
0.7.11) [8-10]. After the alignment, the PCR duplicates
were removed using the Picard tools (ver. 1.109) Mark
Duplicates package. The realignment around the known
indel sites and Base Quality Score Recalibration (BQSR)
were performed using GATK (ver. 3.3) [11]. GATK Hap-
lotypeCaller was used to call the raw variants. The indels
and SNPs were annotated using ANNOVAR [12]. Public
databases, including dbSNP138, 1000 Genome project,
Exome Sequencing Project, ClinVar and HGMD [13],
were used to screen the variants. The functional effect
prediction was evaluated using the PolyPhen-2 and SIFT
scores [14, 15]. To detect the copy number variant
(CNVs), the sequencing depth of each region covered by
the probes was calculated according to the alignment
files. The ExomeDepth [15] package was also used to
identify potential CNVs. Confirmed point mutation sam-
ples in the same sequence run served as controls in the
CNV analysis. All variants are classified in American
College of Medical Genetics and Genomics standards
and guidelines [16].

Variants verification

To further verify the candidate mutations, we performed
Sanger sequencing of the DNA samples extracted from
the patients and their family members. PCR was per-
formed using GoldStarTaq DNA Polymerase (CWbio-
tech) according to a standard protocol [17]. The PCR
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products were sequenced on an ABI3730x] DNA
Analyzer (Applied Biosystems). A genotype-phenotype
co-segregation analysis was performed if the parents’
blood samples were available. To detect splicing muta-
tions, RNA was extracted from frozen muscle biopsies
using RNAiso Plus (Takara), and cDNA was synthetized
using a PrimeScriptTMRT Reagent Kit (Takara).

Results

Sequence reads and average coverage of the targeted
regions

We performed targeted NGS in 60 patients with clinic-
ally defined primary periodic paralysis from 53 families
to identify 17 known variants and 8 novel mutations in
skeletal muscle ion channel genes (Additional file 2:
Table.S1). These variants included 2 pathogenic, 16
likely pathogenic and 7 variants with uncertain signifi-
cance. No CNVs have been found in these cases.

On average, 3625 raw variants were detected per pa-
tients, and 3154 high-quality variants remained after fil-
tering. The average sequencing depth was 488.11x, and
the average coverage was 99.45%. GC-rich sequences
have been shown to reduce the efficiency of the probe
capture. Ion channel genes with GC-rich (>70%) target
regions are listed in Additional file 2: Table. S2. Within
these regions, a much lower sequencing depth and
coverage have been observed.

Variants with established skeletal muscle ion channel-
related genes

Variants of established skeletal muscle ion channel
genes, including CACNA1S, SCN4A and KCNJ2, were
identified in a total of 37 patients (37/60, 61.67%)(Fig. 2).
SCN4A (NM_000334) mutations accounted for the ma-
jority in this primary PP cohort (19/39,48.7%). We iden-
tified 10 SCN4A variants including 6 reported mutations
(c2014C>T p.Arg672Cys, ¢.2024G>A p.Arg675Gln,
¢2111C>T p.Thr704Met, c4352G>T p.Argl451Lleu,

cA774A > G p-Met1592Val, and c.5293G > A
p.Alal765Thr) and 4 novel mutations (c.107_109del
p.Glud6del, ¢c121C>T  p.ArgdlTrp, c718G>A

p-Val240Met, and c.3868 T > C p.Phel290Leu) (Fig. 3a).
Among them, ¢.2024G > A p.Arg675GIn was identified
in 8 patients from 6 families as a potential hotspot. Two
variants with uncertain significance (c.107_109del
p.Glu36del and ¢.5293G > A p.Alal765Thr) are distrib-
uted in the N’'- terminus and C’-terminusof the
a-subunit, which are distant from the 24 «-helical trans-
membrane segments.

Second most prevalent gene responsible for primary
periodic paralysis was KCNJ2 (NM_000891). We
identified 8 reported variants (c.199C>T p.Arg67Trp,
c211G>A p.Asp71Asn, ¢.566G>T p.Argl89Ser,
€.644G > A p.Gly215Asp, ¢.652C>T p.Arg218Trp, c.
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899G > A p.Gly300Asp, ¢.919A >G p.Met307Val, and
€.921G > C p.Met3071le) in a total of 14 patients (Fig. 3b).
Moreover, we identified 4 likely pathogenic variants
(c614T>A p.Phe205Tyr, ¢.1583G>A p.Arg528His,
€.2965G > A p.Glu989Lys and ¢.3716G > A p.Argl1239His)
in CACNA1S gene (NM_000069).

Clinical features of patients with known skeletal muscle
ion channel-related gene mutations

Patients with SCN4A mutations are all male with
juvenile-onset hypoPP or normoPP. Noticeably, one case
had normal serum potassium level during attacks (3.8
mmol/L, normal, 3.5-5.5 mmol/L), but the muscle weakness
got worsened by steroids administration. We identified a re-
ported homozygous SCN4A mutation (c4352G>T
p.Argl451Leu) in a teenage boy with hypokalemia [18, 19].
The parents are both heterozygous carriers of the same vari-
ant but only manifest subclinical myotonia after EMG study.

A total of 14 patients (14/39, 35.9%) with ATS mani-
fested early onset periodic paralysis, variable dysmorphic
features and cardiac arrhythmia, except one case whose
ECG result is not available. Ventricular arrhythmia includ-
ing premature ventricular contraction, bigeminy runs,
couplets, triplets and bidirectional ventricular tachycardia,
was demonstrated in 13 cases (except P16 who did not
perform ECG study, Additional file 1: Table.S1). Long QT
syndrome was documented in 11 cases.

All 4 cases (4/39,10.2%) with CACNAI1S mutations
are either autosomal dominant inherited (2 patients)
or sporadic periodic paralysis (2 patients) with hypo-
kalemia. Potassium supplement and methazolamide
oral administration effectively reduced the episodic
frequency.

Variants in rarely reported skeletal muscle ion channel-
related genes

One known variant (c.8290G > A p.Glu2764Lys) and one
novel variant (c.12428C > T p.Ala4143Val) were identified
in RYR1 gene. The patient harboring heterozygous RYR1
variant p.Glu2764Lys had repeated episodes of generalized
normokalemic paralysis after 20 years old. Another patient
carrying heterozygous RYR1 variant p.Ala4143Val com-
plained of recurrent muscle weakness in proximal lower
limbs with hypokalemia since 24 years old with a fre-
quency of 2—3 times per year. Neither of these cases had
proceeding family history of neuromuscular disorders.
There is no cognitive, bulbar or respiratory involvement.

Discussion

In this study, we designed a targeted NGS gene assay
comprising 10 ion channel-related genes and 245 mus-
cular dystrophy/myopathy-related genes to screen pa-
tients with primary PP who were referred to our
diagnostic center. In total, we elucidated genetic contri-
butions in 65.0% (39/60) of the primary periodic paraly-
sis cohort.

Known responsible gene variants (CACNA1S, KCNJ2
and SCN4A) were identified in 61.67% of the whole co-
hort. So far, this is the first cohort to study the frequen-
cies of known variants in Chinese patients with primary
PP, as follows: (1) SCN4A variants are the most common
genetic cause; (2) KCNJ2 variants are the second most
common; (3) CACNA1S mutation is relatively rare.
Among the 37 cases with HypoPP, SCN4A mutation
group accounts for 29.73% (11/37), KCNJ2 and CAC-
NA1S account for 10.81% (4/37) respectively. While
CACNAI1S mutations are the most common in HypoPP
patients in USA and European population [20-22],
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SCN4A accounts for the majority of HypoPP across
Chinese individuals. Since most patients recruited in this
study are adults, a selection bias may exist. Besides,
there are different genetic variations for patients with
primary PP across populations. With regard to the hot
spot identified in this study, a SCN4A variant
(p.Arg675GlIn) accounted for the majority of all patients
with sodium channelopathies (42.1%, 8/19). The most
prevalent sodium channel variants in USA population
[21], T704 M and M1592V, were identified in three
Chinese individuals with normokalemic PP.

In this cohort, most variants identified in the Navl.4
channel were distributed in the S4-S6 transmembrane re-
gions where the voltage sensors and pore formers are lo-
cated. A Novel variant p.Val240Met was located in the
cytoplasmic Domain I S4-S5 loop. The linker help con-
nected the voltage sensing domain S4 and pore-forming
domains S5-S6 [23]. At normal conditions, depolarization

will cause the positively charged S4 segment to move to-
wards cell surface and this motion is transferred to the
pore domain S5-6 via the linker, abruption of which re-
sults in a failed conformational change thus lead to de-
layed opening of the sodium channel. Another novel
variant p.Phel290Leu was located in the N-terminal of
Domain III-S6, the pore-forming segment of the channel.
The remaining 3 novel variants, ie,p.36_37del,
p-Arg41Trp and p.Alal765Thr, are distributed in the N'-
terminus and C’-terminus of the a-subunit. Though they
are rare variants and might be pathogenic, a detailed cose-
gragation analysis and functional studies are still required
to valid the results.

Nine variants identified in Kir2.1 were located in the
C-terminal intracytoplasmic tails. There is no hotspot variant
in KCNJ2 identified in this Chinese cohort. These regions
are considered to play an important role in maintaining nor-
mal function; thus, these mutations likely disrupt the ion
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channels. Of these mutations, p.Pro186Thr, p.Argl89Ser,
p.Gly215Asp and p.Arg218Trp are located at sites in which
Kir21 and phosphatidylinositol-4,5-bisphosphate (PIP2)
combine, which likely abolishes the direct and specific activa-
tion of Kir2.1 [24]. Two highly frequent missense variants,
ie,p.Arg528His and p.Argl239His in CACNAILS gene were
observed in two patients. According to previous reports, pa-
tients with these two mutations have a late onset age of 17.2
+4.0 and 158 +8.8years compared with that of other
HypoPP cases [25, 26].

RYR1 gene has originally been reported to be respon-
sible for congenital myopathy and malignant hyperther-
mia. Two missense mutations of the RYR1 gene were
demonstrated in two independent cases with PP in our
cohort. The first mutation p.Glu2764Lys was previously
found in a patient with malignant hyperthermia [27].
Another mutation p.Alad143Val was novel with a
Polyphen-2score of 0.991 and a SIFT prediction score of
0. This mutation is located in the Malignant
hyperthermia domain III (exon 90-104). In a previous
study, A homozygous RYR1 mutation (c.8816G > A
p-Arg2939Lys) in skeletal muscle was responsible for a
35-year-old male with congenital myopathy as well as a
typical periodic paralysis [3]. A discrepancy was demon-
strated that the c.8816G > A nucleotide change was het-
erozygous at the genomic level. However, in our cases
with RYR1 heterozygous mutations, it needs further ana-
lysis with patient-derived skeletal muscle and cell models
to establish the relationship between the RYR1 variants
and the phenotype.
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Using this NGS panel, we possibly expanded the
spectrum of genotypes associated with PP (Fig. 4). NGS
is not a perfect tool but is a method under development
for discovering new mutations that may be involved in
disease conditions. By including primary myopathy/
muscle dystrophy genes in the panel, we increased the
diagnostic yield from 61.67% (37/60) to 65.0% (39/60) in
screening primary PP patients. But for some rare vari-
ants like RYR1 variants, the functional analysis is re-
quired for further confirmation of the causality.

Still, we were unable to achieve a definite diagnosis in
the remaining 21(35.0%) cases. The relatively low depth
and coverage in the GC-rich sequences of certain genes,
which are likely causal CNV variations, and unknown
genes may contribute to major causes of the
panel-negative cases. Hopefully, solving the phenotype
positive/genotype negative mystery cases will shed new
light regarding novel pathogenic mechanisms underlying
the remaining cases of primary PP.

Conclusions

Using targeted NGS, we achieved a diagnostic success
rate of 65% in a cohort of primary PP patients. We ex-
panded the spectrum of genotypes of primary PP and
clinical phenotypes of known myopathy-related genes.
We'd like to attribute this diagnostic rate to the inclusive
strategy of screening for other causal factors of hypokal-
aemic muscle weakness and performing accurate clinical
examinations and history inquiries prior to the interpret-
ation of the NGS results.
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