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Abstract

Background: Activated Vitamin D has anti-inflammatory properties and adequate 25-hydroxyvitamin D [25(0OH)D]
concentrations may be important for neurocognitive function and protection against neurologic injury. We
examined whether mid-life 25(0H) D concentrations were associated with later-life performance on neuropsychological
testing, functional ability, depressive symptoms, and incident dementia.

Methods: We studied 13,039 white and black ARIC participants who had serum 25(0OH) D measured mid-life at visit 2
(1990-1992). Over the next ~ 20 years through visit 5 (2011-2013), participants underwent 3 additional in-person visits,
annual telephone calls, and hospitalization surveillance. An extensive battery of neuropsychological outcomes were
assessed at visit 5 using standardized protocols. Incident dementia was ascertained through a formal algorithm that
included data from in-person cognitive testing, telephone interviews, hospital discharge codes, and death certificate
codes. Diagnoses of dementia were adjudicated by expert clinician committee. For the primary cognitive analyses, we
imputed for missing covariates and outcomes and used linear regression to evaluate non-concurrent cross-sectional
associations of mid-life 25(0H) D (visit 2) with late-life neuropsychological outcomes (visit 5). We also used Cox regression
models to examine associations of mid-life 25(OH) D and incident dementia.

Results: In mid-life, the mean (SD) age of participants was 57 (6) years, 57% were women, and 24% black. Mean (SD)
25(0OH) D was 24.3 (8.6) ng/mL; 33% had deficient (< 20 ng/mL), 44% intermediate (20- < 30 ng/mL), and 23% sufficient
(230 ng/mL) 25(0OH) D concentrations. Association between mid-life 25(0OH) D and late-life performance on
neuropsychological testing were mostly null. There was no significant association with functional ability or
depressive symptoms. Results were similar in a sensitivity analysis using complete-case data (no imputation).
However, after a median follow-up of 20 years, low 25(0OH) D concentrations were associated with increased risk
for incident dementia (p=0.01 for trend across categories), with HR of 1.26 (95% CI 1.06, 1.49) for participants
with deficient 25(0OH) D, compared to sufficient concentrations.

(Continued on next page)

* Correspondence: edonnell@jhmi.edu

'Ciccarone Center for the Prevention of Cardiovascular Disease, Johns
Hopkins University School of Medicine, Blalock 524-B, 600 N. Wolfe Street,
Baltimore, MD 21287, USA

3Department of Epidemiology, Johns Hopkins Bloomberg School of Public
Health, Baltimore, MD, USA

Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12883-019-1483-3&domain=pdf
http://orcid.org/0000-0002-5547-5084
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:edonnell@jhmi.edu

Fashanu et al. BVIC Neurology (2019) 19:244

Page 2 of 13

(Continued from previous page)

health status remains uncertain.

Conclusion: In this community cohort, mid-life serum 25(0OH) D concentrations were associated with incident
dementia but not with performance on neuropsychological testing, functional ability, or depressive symptoms,
20 years later. Whether serum 25(0OH) D concentrations are causally related to dementia or confounded by poorer

Trial registration: Registered on clinicaltrials.gov NCTO0005131.
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Introduction
Vitamin D in its activated form [1,25-dihydroxyvitamin D]
may be important for cognitive functioning and protective
against neurovascular injury [1, 2]. Vitamin D receptors
are located in the cortex and hippocampus, areas of the
brain important for cognitive functioning, and vitamin D
receptor downregulation in these areas has been associated
with Alzheimer’s disease [1]. Therefore, adequate serum
concentrations of 25-hydroxyvitamin D [25(OH)D], the pri-
mary circulating form of vitamin D, in mid-life may help
prevent cognitive decline, Alzheimer’s disease and vascular
dementia in later-life. However, prior research on the asso-
ciations between 25(0OH) D and cognitive functioning have
provided mixed results [3—11]. Nevertheless, a recent sys-
tematic review and meta-analysis of five cohort studies pro-
vided some evidence towards a positive and significant
association of low 25(OH) D with dementia risk [5].
Additionally, vitamin D receptor gene polymorphisms
have been associated with depressive symptoms [12]. Low
25(0OH) D concentrations have also been associated with
muscle weakness [13], reduced physical performance [14],
frailty [15], and falls [16], but interventional trials of vita-
min D supplementation on functional outcomes have
shown no benefit or have been inconclusive [17-19]. The
identification of easily modifiable risk factors in the regu-
lation of mood and physical function in the elderly is of
great importance as these affect the quality of life [20, 21].
In sum, the relationship of 25(OH) D concentrations
with cognitive function, depression, and physical func-
tioning have been inconclusive to date. Cross-sectional
studies conducted in the elderly of the associations of
25(0OH) D with neuropsychological outcomes may be
limited by reverse causation. To further address this
knowledge gap, we therefore examined associations be-
tween mid-life 25(OH) D concentrations and late-life
performance on a comprehensive battery of neuro-
psychological, functional, and depression testing, and the
association with incident dementia, in the Atheroscler-
osis Risk in Communities (ARIC) cohort.

Methods

Study population

The ARIC study is an ongoing community-based cohort
which in 1987-1989 enrolled 15,792 participants, aged

45-65 years, from four U.S. communities, as previously
described [22]. After baseline, participants attended up
to five additional in-person study visits (which included
cognitive testing at 4 of these visits), and they were also
followed by semi-annual telephone interviews and active
surveillance of community hospitals. ARIC was approved
by the institutional review boards of each participating
institution, and all participants provided written in-
formed consent at each visit.

The present analysis includes all ARIC participants
(N=13,039) who had 25(0OH) D measurement in mid-
life at visit 2 (1990-1992) and were free from dementia
at this visit. See Fig. 1 for exclusions. At ARIC visit 5
(2011-2013), all surviving participants were invited to
participate in the ARIC Neurocognitive Study (ARIC-
NCS) exam (n =5914). In this present study, we exam-
ined the association of mid-life (visit 2) 25(OH) D levels
with neuropsychological performance assessed at the
ARIC-NCS study ~ 20-years later and with incident de-
mentia occurring over this 20-year follow-up.

Covariates of interest

Serum 25(OH) D was only measured at ARIC visit 2 for
the whole cohort, which is why this visit is the baseline for
the present analysis. The baseline characteristics of study
participants were obtained at visit 2 from questionnaires,
medication inventory, physical exam, and laboratory data,
except as otherwise noted. Body mass index (BMI) was
measured from height and weight. Systolic blood pressure
(SBP) was calculated from the mean of the second and
third measurements out of three obtained. Diabetes was
defined as a fasting glucose >126 mg/dL or non-fasting
glucose >200 mg/dL, a self-reported physician diagnosis of
diabetes, or current use of hypoglycemic medication. Total
and HDL-cholesterol were measured using standardized
enzymatic assays [23]. The Chronic Kidney Disease Epi-
demiology Collaboration formula [24] was used to esti-
mate glomerular filtration rate (eGFR). Serum intact
parathyroid hormone (PTH) concentrations was measured
using an Elecsys assay (Roche Diagnostics, Indianapolis,
IN), and calcium and phosphate concentrations were mea-
sured by a colorimetric method through a Modular P-
Chemistry Analyzer (Roche Diagnostics) [25].
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25(0OH) D measurement

Serum 25(OH) D concentrations were measured from
fasting samples that had been collected at visit 2 (1990—
1992) and stored at — 70 °C until measured in 2012-2013
using liquid chromatography-tandem high-sensitivity
mass spectrometry (Waters Alliance €2795, Milford, MA,
USA) [26]. Concentrations of serum/plasma 25(0OH) D
have previously been shown to have long-term stability
when measured from frozen samples [27, 28]. The co-
efficients of variation were 20.8 and 6.9% for
25(0OH)D, and 25(OH)D3, respectively. Using blind dupli-
cate samples, the intraclass correlation coefficients, calcu-
lated by the icc() function in the R package irr, were 0.96
(95% CI 0.95-0.96) for 25(0OH)D, and 0.91 (0.86—0.92) for
25(OH)Ds. Total 25(0OH) D concentration was calculated
from the sum of 25(OH)D, and 25(OH)D;. To convert
25(0OH) D from ng/mL to nmol/L, multiply by 2.496.

Outcome measures

Previously, in the ARIC cohort, we evaluated the associ-
ation of 25(0OH) D with cognitive decline using a global
cognitive Z-score based on repeated measures of just 3
cognitive tests [7, 8], and no relationships were found.
Our primary outcome for the present analysis is the asso-
ciation of mid-life 25(OH) D with the late-life perform-
ance on a more extensive battery of neuropsychological
tests at the ARIC-NCS exam.

Neuropsychological testing at the ARIC-NCS were ad-
ministered in a quiet room by trained examiners using
standardized protocols [29, 30] and included the follow-
ing cognitive domains: memory (Delayed Word Recall
Test, Logical Memory Test Part I and II, Incidental
Learning), language (Animal Naming, Boston Naming
Test, Word Fluency Test), and processing speed and ex-
ecutive function (Trail Making Test A and B, Digital
Symbol Substitution Test, Digit Span Backwards). Sec-
ondary outcomes assessed includes functional ability
[Functional Activities Questionnaire (FAQ), Time to
Walk 4m, Short Physical Performance Battery (SPPB)
score and grip strength], mental status [Mini-Mental
State Examination (MMSE)], and depressive symptoms
using the 11-item Center for Epidemiological Studies-
Depression (CES-D). The (Additional file 1: Supplemen-
tal Methods) section provides more details about how
these tests are performed and the normative scores for
the ARIC cohort.

Dementia ascertainment

Incident dementia cases in ARIC were adjudicated by an
expert dementia classification committee comprised of
eight clinicians including four physicians and four neu-
ropsychologists [31]. Dementia was ascertained using a
pre-determined algorithm, incorporating data from the
cognitive tests performed at ARIC visits 2, 4, and 5, the
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full neuropsychological assessment performed at visit 5,
participant interviews, informant (family member) inter-
views, and also hospital discharge codes and diagnostic
codes from death certificates, as has been previously
described in ARIC [31-35]. Each dementia case was
adjudicated by a physician (either a geriatrician or neur-
ologist) and a neuropsychologist, and in cases of dis-
agreement a third clinician confirmed the diagnosis.

Statistical analyses

We used seasonally-adjusted 25(OH) D concentrations
as previously described in ARIC [26] and categorized
them based on established clinical cut-points [36, 37] as
deficient (< 20), intermediate (20-<30), or sufficient
(=230 ng/mL). We also examined 25(OH) D continuously
per standard deviation (SD) decrement. We used
multivariable-adjusted linear regression models to
examine the non-concurrent cross-sectional associations
between mid-life 25(OH) D (at visit 2) and later-life
neuropsychological and cognitive testing, functional abil-
ity, and depressive symptoms (at visit 5). Cox regression
models were used for the incident dementia analysis. We
verified that the proportionally hazards assumption was
not violated by interacting 25(0OH) D categories with log
follow-up time; results were not significant.

We used progressively adjusted models. Model 1, our
main model, adjusted for demographic, behavioral, and
genetic factors: age (years), sex, race/center (MD-whites;
MN-whites; NC-whites; NC-blacks; MS-blacks), educa-
tion (<high school; high school or equivalent; college,
graduate or professional school; assessed at visit 1), BMI
(continuous, kg/m?), smoking status (current; former;
never), alcohol consumption (current; former; never),
physical activity (score range 1 to 5, using Baecke Phys-
ical Activity questionnaire [38] at visit 1), and APOE &4
genotype. Model 2 further adjusted for cardiovascular
disease risk factors: SBP, use of hypertension medication,
total and HDL cholesterol (mg/dL), use of cholesterol
medications, diabetes, prevalent coronary heart disease,
prevalent stroke, and estimated glomerular filtration rate
(eGFR, mL/min/1.73 m?). Model 3 additionally adjusted
for biomarkers related to 25(OH) D metabolism: PTH
(pg/mL), calcium (mg/dL), and phosphorus (mg/dL).

In our primary cognitive analyses, to account for miss-
ing data and loss of follow-up between visits 2 and 5, we
imputed missing covariates at baseline (visit 2) and miss-
ing neurocognitive outcomes at the ARIC-NCS (visit 5)
using multiple imputation by chained equation methods
[39] (see Additional file 1: Table Se-1 for imputed num-
bers). This method of accounting for attrition is recom-
mended by the ARIC-NCS working group and has been
previously validated in the ARIC cohort [40]. However,
in a sensitivity analysis, we also considered a “complete-
case” analysis of only those participants who attended
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both visit 2 and visit 5 (2011-2013) (7 =5914). In an-
other sensitivity analysis, we examined all participants
who were not known to be deceased at the time of the
ARIC-NCS visit (participants who came to the ARIC-
NCS and those who did not attend but were alive). In
our Cox models, we assessed for interactions by age,
race/center, and sex. We considered p-values <0.05 to
be statistically significant and performed analyses using
Stata Version 15 (StataCorp, College Station, TX).

Results

Baseline characteristics

Among the 13,039 participants, the mean (SD) age in
mid-life was 57.4 (5.7) years and 25(OH) D concentration
was 24.3 (8.6) ng/mL. Participants were 57% women, 24%
black, and 33% had deficient, 44% intermediate, and 23%
sufficient 25(OH) D concentrations. On average, partici-
pants with sufficient mid-life 25(OH) D were older, had
lower BMI, SBP, total cholesterol, eGFR, PTH, and phos-
phate levels, and higher HDL-cholesterol and physical ac-
tivity index compared to participants with deficient 25(OH)
D concentrations. They were more likely to be white,
current drinkers and on cholesterol lowering medications.
They were less likely to be women, current smokers, on an-
tihypertensive medications, have diabetes, or prevalent
stroke (Table 1). The baseline characteristics of participants
by attrition status is presented in Additional file 1: Table
Se-2. Participants who attended the ARIC-NCS visit (at visit
5) tended to be younger, female, white, and had a more
favorable cardio-metabolic profile at baseline than those
who did not attend the ARIC-NCS visit.

Neuropsychological test performance, functional ability,
mental status, and depressive symptoms

The mean (SD) age in late-life was 75.8 (5.3) years. 25(OH)
D concentrations at mid-life were not associated with most
of the neuropsychological testing outcomes (Fig. 2). In the
domain of memory, we found intermediate concentrations
of 25(OH) D to be associated with the Delayed Word Recall
test in our main model but further adjustment for cardio-
vascular disease risk factors in model 2 yielded null results
(Table 2). We found no association of 25(OH) D with
outcomes in the domain of language and verbal fluency
(Table 2). In the domain of processing speed and execu-
tive function, lower 25(OH) D per 1 SD decrement was
associated with lower Trail B times and higher digit
span backwards score (i.e. more favorable scores),
which is in contrast to our hypotheses (Table 3). There
was no significant associations of 25(OH) D with func-
tional ability, mental status, and depressive symptoms
20-years after measurement of 25(OH) D (all p > 0.05,
Table 4). In our sensitivity analyses, the results were
also mostly null (and consistent with primary analysis)
among only the participants who presented for the
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Baseline characteristics Overall 25(0H) D (ng/mL)

>30 (Sufficient) 20- < 30 (Intermediate) < 20 (Deficient)
N 13,039 3046 5759 4234
25(0H) D (ng/mL), b range 0.5-108.7 30-108.7 20-< 30 0.5-<20
25(0H) D (ng/mL),° mean (SD) 24.3 (8.6) 358 (5.9) 248 (2.8) 153 (35)
Age (years), mean (SD) 574 (5.7) 579 (5.7) 576 (5.7) 56.9 (5.7)

Women, n (%)
Race/Center, n (%)
Minneapolis, MN Whites
Washington County, MD Whites
Forsyth County, NC Whites
Forsyth County, NC Blacks
Jackson, MS Blacks
Education, n (%) *
< High School
High School, GED, or Vocational School
College, Graduate, or Professional School
BMI (kg/m?), mean (SD)
Physical activity index, mean (SD) *
Current Smoker, n (%)
Current Drinker, n (%)
Systolic Blood Pressure (mmHg), mean (SD)
Use of Hypertension Medications, n (%)
Total Cholesterol (mg/dL), mean (SD)
HDL Cholesterol (mg/dL), mean (SD)
Use of Cholesterol Medications, n (%)
Diabetes, n (%)
Prevalent Coronary Heart Disease, n (%)
Prevalent stroke, n (%)
eGFR (mL/min/1.73 m?), mean (SD)
Parathyroid hormone (pg/mL), mean (SD)
Calcium (mg/dL), mean (SD)
Phosphate (mg/dL), mean (SD)

Thyroid stimulating hormone (mlIU/L), median (IQl)

7384 (56.6%)

3527 (27.1%)
3373 (25.9%)
2974 (22.8%)
344 (2.6%)

2821 (21.6%)

2785 (21.4%)
5451 (41.8%)
4803 (36.8%)
280 (54)

24 (0.8)
2857 (21.9%)
7349 (56.4%)
1215 (189)
4282 (32.8%)
210.1 (39.5)
49.7 (16.8)
830 (6.4%)
1913 (14.7%)
753 (5.8%)
252 (1.9%)
96.3 (15.8
426 (239
94 (04)
35(05)
1.8 (1.2-27)

)
)

1490 (48.9%)

981 (32.2%)
902 (29.6%)
961 (31.6%)
18 (0.6%)
184 (6%)

562 (18.5%)
1358 (44.6%)
1126 (37%)
263 (4.2)

2.7 (0.8)

595 (19.5%)
1920 (63.0%)
119.2 (18.0)
836 (27.5%)
209.3 (38)
512 (17.9)
225 (7.4%)
272 (8.9%)
192 (6.3%)
38 (1.3%)
92.7 (14)
36.8 (12.7)
93 (04)
35(0.5)

1.9 (1.3-2.8)

2998 (52.1%)

1721 (29.9%)
1623 (28.2%)
1400 (24.3%)
94 (1.6%)
921 (16%)

1181 (20.5%)
2392 (41.5%)
2186 (38%)
278 (5)
25(0.8)
1149 (20.0%)
3365 (58.4%)
120.8 (184)
1828 (31.7%)
210.3 (38.6)
48.7 (16.1)
382 (6.6%)
789 (13.7%)
333 (5.8%)
116 (2%)
95.5 (14.7)
413 (186)
94 (04)
35(0.5)

1.8 (1.2-27)

2896 (68.4%)

825 (19.5%)
848 (20%)
613 (14.5%)
232 (5.5%)
1716 (40.5%)

1042 (24.6%)
1701 (40.2%)
1491 (35.2%)
295 (6.3)
2.2(0.7)
1113 (26.3%)
2064 (48.8%)
124.1 (19.8)
1618 (38.2%)
2104 (416)
50.1 (16.8)
223 (5.3%)
852 (20.1%)
228 (5.4%)
98 (2.3%)
99.9 (17.6)
487 (333)
94 (0.5)

36 (0.5)

1.7 (1.1-26)

Abbreviations: ARIC Atherosclerosis Risk in Communities; eGFR Estimated Glomerular Filtration Rate; /Q/ Interquartile interval

? Measured at ARIC visit 1
® To convert 25(0H) D from ng/mL to nmol/L, multiply by 2.496

ARIC-NCS visit [n=5914 (“complete-case” analysis);
Additional file 1: Table Se-3] and among all the partici-
pants who were known to be alive at the ARIC-NCS
visit (n = 9356; Additional file 1: Table Se-4).

Dementia
There were 1323 incident cases of dementia over a
median follow-up of 20years (235,308 person-years).

The unadjusted incidence rate (95% CI) per 1000
person-years were 4.83 (4.29, 5.44), 5.73 (5.28, 6.20), and
6.07 (5.54, 6.66) for sufficient, intermediate, and deficient
concentrations of 25(0OH) D, respectively. When com-
pared to participants with sufficient 25(OH) D, the hazard
ratios (95% CI) were 1.12 (0.97, 1.30) for intermediate and
1.26 (1.06, 1.49) for deficient 25(OH) D concentrations
after adjustment for variables in our main model which in-
cluded demographic, behavioral, and genetic factors, p =
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Fig. 2 Association between mid-life 25(0OH)D (1990-1992) and Later Life. Neuropsychological Test Performance (2011-2013): ARIC-NCS. DWR=
Delayed word recall test; LM=Logical memory; IL=Incidental learning symbol; WFT=Word fluency test; DSS=Digit symbol substitution; DSB=Digit
span backwards; FAQ=Functional activities questionnaire; 4 MS=Time to walk 4 meters; GS=Grip strength; SPPB=Short Physical Performance
Battery; CES-D=Center for Epidemiologic. Studies Depression; MMSE=Mini-mental state exam. “A higher value indicates a more favorable
performance/measure; b a lower value indicates a more favorable performance/measure. Results were derived from multivariable linear regression
models. Figure presents the adjusted difference in neuropsychological performance for intermediate 25(0H)D (20-29 ng/ml) [shown in black
circles] and deficient vitamin D (<20 ng/ml) [shown in red circles], compared to sufficient 25(OH)D =230 ng/mL as reference. Models were
adjusted for age, sex, race/center, educational, body mass index, smoking status, alcohol consumption, physical activity, and APOE ¢. To covert

0.01 for trend across categories (Table 5, model 1). Results
remained statistically significant for trends across categor-
ies (p=0.01) in our fully-adjusted model 3, with an in-
creased risk for incident dementia (HR 1.24 [95% CI 1.05,
1.48] for participants with deficient 25(OH) D, compared
to sufficient concentrations. There were no interactions
by age, race, or sex (all p > 0.05).

Discussion

In this community-based cohort, deficient 25(OH) D
concentrations in mid-life were significantly associated
with risk of incident dementia but were mostly not asso-
ciated with late-life performance on neuropsychological
testing, functional ability, or depression testing approxi-
mately 20-years later.

Low serum concentrations of 25(OH) D have previously
been associated with stroke [26], coronary heart disease
[26], and cardiovascular risk factors such as hypertension,
diabetes, and lipids [23, 41, 42]. A growing body of evi-
dence has also suggested a possible role of vitamin D in
the development of dementia [1] and our findings appears

to be consistent with some of such observational studies
[5]. This may be due to the role of activated vitamin D in
preserving healthy neurons and protection against known
risk factors of dementia [1, 2, 5]. Despite this, vitamin
D supplementation has not been shown to prevent
dementia in prior randomized control trials, albeit
some of these trials used lower doses of vitamin D
supplements or studied patients with existing im-
paired cognition [43, 44]. It is also possible that vita-
min D in the form of supplementation does not
confer the same benefit as when obtained from nat-
ural sources such as diet and sunlight. Vitamin D
supplementation, when combined with calcium supple-
ments, may actually be associated with some harms
such as hypercalcemia, hypercalcuria, kidney stones,
and vascular events [19, 45-47]. However, a Mendelian
randomization study did not find evidence of genetically-
determined 25(OH) D concentrations to be causally re-
lated to cognitive function [48].

Using data from the ARIC cohort, we previously had
found that 25(OH) D concentrations were not associated
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Table 2 Adjusted Average Differences in Later Life Neuropsychological Test Performance Associated with Mid-Life 25(0OH) D

Concentrations: the ARIC Study °

Neuropsychological 25(0H) D (ng/mL) p-trend Per 1 SD decrement in
outcomes >30 (Sufficient) 20- < 30 (Intermediate) < 20 (Deficient) 250H) D °
N 3046 5759 4234 13,039
Memory
Delayed word recall test ©
Model 1 ¢ 0 (reference) —-0.11 (- 0.22, - 0.01) —0.06 (-0.18,0.07) 041 —0.01 (- 0.06, 0.03)
Model 2 € 0 (reference) —0.10 (- 0.20, 0.01) —0.04 (- 0.17, 0.08) 0.58 —0.01 (- 0.05, 0.04)
Model 3 0 (reference) —0.10 (= 0.21, 0.003) —-0.06 (- 0.19, 0.07) 042 —0.01 (- 0.06, 0.03)
Logical memory | ©
Model 1 ¢ 0 (reference) -0.21 (=061, 0.19) -0.18 (- 067, 0.32) 0.51 —0.05 (- 0.24, 0.14)
Model 2 ¢ 0 (reference) —0.22 (- 062,0.18) —0.19 (- 068, 0.31) 048 —0.06 (- 0.25,0.13)
Model 3 0 (reference) —0.25 (=065, 0.15) —-0.27 (- 0.76, 0.22) 029 —0.09 (-0.28,0.10)
Logical memory Il ©
Model 1 ¢ 0 (reference) —0.18 (= 0.56, 0.20) -0.21 (= 0.75,0.33) 045 —0.04 (- 0.23,0.16)
Model 2 € 0 (reference) —0.18 (- 0.57, 0.20) —0.19 (= 0.73,0.34) 0.49 —0.03 (-0.23,0.17)
Model 3 f 0 (reference) —0.20 (- 0.58,0.19) —-0.24 (- 0.76, 0.29) 0.38 —0.05 (- 0.25, 0.15)
Incidental learning symbol ©
Model 1 ¢ 0 (reference) —-0.02 (= 0.11, 0.07) 0.08 (—0.03, 0.20) 0.14 0.04 (—0.01, 0.08)
Model 2 © 0 (reference) —0.01 (-=0.10, 0.08) 0.10 (- 0.02, 0.22) 0.08 0.04 (—0.001, 0.09)
Model 3 f 0 (reference) —-002 (-0.11,0.07) 0.07 (- 0.04,0.19) 0.20 0.03 (- 0.01, 0.07)
Language and Verbal Fluency
Word fluency ©
Model 1 ¢ 0 (reference) —0.32 (=093, 0.28) 0.29 (- 047, 1.05) 040 0.17 (= 0.13, 046)
Model 2 € 0 (reference) —0.21 (= 0.82, 0.40) 0.50 (- 0.26, 1.27) 0.17 0.25 (—0.05, 0.55)
Model 3 f 0 (reference) —021(-083,041) 048 (—0.31, 1.26) 0.20 0.24 (- 0.08, 0.55)
Animal naming ©
Model 1 ¢ 0 (reference) -0.14 (= 0.39,0.12) —0.07 (- 042, 0.28) 0.72 0.001 (—=0.13,0.14)
Model 2 € 0 (reference) —0.09 (- 0.35,0.17) 0.03 (- 0.33,0.38) 0.84 0.04 (- 0.10,0.18)
Model 3 f 0 (reference) —0.10 (- 0.36, 0.16) 0.01 (-0.34,0.35) 0.94 0.03 (-0.10,0.16)
Boston naming test score ©
Model 1 ¢ 0 (reference) —0.11 (- 0.38,0.15) 0.05 (- 0.26, 0.37) 0.70 0.04 (—0.08, 0.16)
Model 2 € 0 (reference) -0.11 (- 038,0.15) 0.07 (- 0.25,0.38) 0.62 0.05 (= 0.07,0.16)
Model 3 f 0 (reference) —0.09 (- 0.35,0.17) 0.12 (= 0.19, 044) 039 0.07 (= 0.05, 0.19)

? Results are presented as beta-coefficients (95% Cl) derived from multivariable linear regression models. Sufficient 25(0H) D > 30 ng/mL was the reference for the
intermediate and deficient 25(0H) D categories. Data in bold text are statistically significant, P <.05
b SD 25(0H) D=84 ng/mL; To covert 25(0OH) D from ng/mL to nmol/L, multiply by 2.496

€ A higher value indicates a more favorable performance/measure

9 Model 1: adjusted for age, sex, race/center, educational, body mass index, smoking status, alcohol consumption, physical activity, and APOE g4 genotype
€ Model 2: Model 1 plus systolic blood pressure, use of hypertension medication, total and HDL cholesterol, use of cholesterol medications, diabetes, coronary

heart disease, and estimated glomerular filtration rate

f Model 3: Model 2 plus serum parathyroid hormone, calcium, and phosphorus concentrations

with 10-year or 20-year cognitive decline using a glo-
bal Z-score based on repeated measures of just 3 cog-
nitive tests [7, 8]. However, in a subset of the ARIC
cohort (n=1652) from the southern ARIC field cen-
ters (Jackson, MS and Forsyth County, NC) who were
participating in the ARIC Brain MRI ancillary study,

we found a suggestive association of lower 25(0OH) D
concentrations with hospitalized incident dementia
(based on only ICD9 codes), but results were not statisti-
cally significant [7]. In that earlier study, comparing the
lowest vs. highest race-specific tertiles of 25(0OH) D, the
hazard ratio for incident dementia for whites was 1.32
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Table 3 Adjusted Average Differences in Later Life Neuropsychological Test Performance Associated with Mid-Life 25(0OH) D

Concentrations: the ARIC Study °

Neuropsychological 25(0OH) D (ng/mL) p-trend Per 1 SD decrement
outcomes >30 (Sufficient) 20- < 30 (Intermediate) < 20 (Deficient) in 250H) D °
N 3046 5759 4234 13,039
Processing Speed and Executive Function
Trail A €
Model 1 € 0 (reference) 0.69 (—0.88, 2.26) —097 (-3.01,1.07) 031 —0.57 (=140, 0.26)
Model 2 f 0 (reference) 0.58 (- 1.00, 2.16) —1.30(-333,073) 0.17 —0.69 (- 1.52,0.13)
Model 3 ¢ 0 (reference) 0.64 (- 092, 2.21) —1.09 (- 3.08, 0.89) 0.24 —060 (-142,022)
Trail B ©
Model 1 € 0 (reference) —0.19 (- 3.34, 2.96) —3.12 (- 6.92,067) 0.09 -1.63 (-3.11, - 0.16)
Model 2 f 0 (reference) —068 (-3.87,252) —4.00 (—7.83,-0.17) 0.04 —-1.98 (- 3.49, — 0.46)
Model 3 9 0 (reference) —0.29 (- 343, 2.85) —2.94 (- 6.69, 0.80) 0.11 -1.55 (- 3.03, — 0.07)
Digit symbol substitution
Model 1 € 0 (reference) -038(-088,0.12) 0.23 (- 0.37,0.84) 038 0.15 (= 0.09, 0.39)
Model 2 f 0 (reference) —0.25 (= 0.75,025) 047 (-0.13, 1.08) 0.10 0.25 (0.01, 0.49)
Model 3 9 0 (reference) —0.27 (-0.77,023) 0.39 (- 0.22, 1.00) 0.17 0.21 (- 0.03, 045)
Digit span backwards ¢
Model 1 € 0 (reference) 0.03 (=008, 0.13) 0.09 (-0.03,021) 0.13 0.05 (0.01, 0.09)
Model 2 f 0 (reference) 0.04 (- 007, 0.14) 0.10 (- 0.02, 0.22) 0.09 0.05 (0.01, 0.09)
Model 3 9 0 (reference) 0.03 (- 0.08, 0.14) 0.10 (= 0.02, 0.22) 0.11 0.05 (0.01, 0.09)

2 Results are presented as beta-coefficients (95% Cl) derived from multivariable linear regression models. Sufficient 25(0H) D > 30 ng/mL was the reference for the
intermediate and deficient 25(0H) D categories. Data in bold text are statistically significant, P <.05

b SD 25(0H) D = 8.4 ng/mL; To covert 25(OH) D from ng/mL to nmol/L, multiply by 2.496

For Trail A and Trail B: a lower value indicates a more favorable performance/measure

9 For digit symbol substitution and digit span backwards: a higher value indicates a more favorable performance/measure

€ Model 1: adjusted for age, sex, race/center, educational, body mass index, smoking status, alcohol consumption, physical activity, and APOE &4 genotype

f Model 2: Model 1 plus systolic blood pressure, use of hypertension medication, total and HDL cholesterol, use of cholesterol medications, diabetes, coronary

heart disease, and estimated glomerular filtration rate

9 Model 3: Model 2 plus serum parathyroid hormone, calcium, and phosphorus concentrations

(95% CI 0.69, 2.55) and for blacks was 1.53 (0.84, 2.79)],
but our analyses may have been underpowered with only
145 cases of hospitalized incident dementia [7].

In this extension of our prior work, our present study
provides 1) a much larger sample size from ARIC (N =
13,039) from all 4 field centers (including the northern
sites of Minnesota and Maryland), 2) a more extensive
battery of neuropsychological and cognitive testing out-
comes, 3) a longer follow-up period (20-years) and 4) a
greater number of incident dementia cases (N =1323)
that have now been formally adjudicated. In the present
analyses, the determination of incident dementia used a
very formal algorithm that incorporated all of the avail-
able data from in-person testing spanning over 20-years,
participant and informant interviews, and ICD9 codes
from hospitalizations and death certificates that was then
adjudicated by an expert clinician panel.

We now confirm a failure to find a consistent association
of mid-life 25(0OH) D with performance on a more extensive
battery of neuropsychological, functional, and depressive
symptoms testing administered 20-years later. In an

exploratory model, we also examined more extreme vitamin
D deficiency [comparing severe deficiency (< 5 ng/mL), mod-
erate deficiency (5-<10ng/mL), and mild 25(OH) D defi-
ciency (10-<20ng/mL) to adequate 25(0OD) H
concentrations (> 20 ng/mL)] with neuropsychological per-
formance measures and findings were still largely null and
consistent with primary analyses (results not shown).
However, in our current analysis, we did find an asso-
ciation with incident dementia, which warrants further
explanation. Considering that some of these neuro-
psychological testing outcomes were used in the adjudi-
cation of dementia, our inability to find positive
associations with most of these individual neuropsycho-
logical tests seems inconsistent with the positive associ-
ation we found with incident dementia. Dementia affects
the quality of life and may have prevented some partici-
pants from returning for the ARIC-NCS visit where all
the neuropsychological, functional ability, and depres-
sion testing were done; whereas the diagnosis of incident
dementia was made by both in-person visits and also by
telephone interviews and hospitalization surveillance
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Table 4 Adjusted Average Differences in Later Life Neuropsychological Test Performance Associated with Mid-Life 25(0OH) D

Concentrations: the ARIC Study °

Neuropsychological 25(0H) D (ng/mL) p-trend Per 1 SD decrement
outcomes =30 (Sufficient) 20- < 30 (Intermediate) < 20 (Deficient) in 250 D °
N 3046 5759 4234 13,039
Functional Ability, Mental status, and Depressive symptoms
Functional activities questionnaire (FAQ) score ©
Model 1 € 0 (reference) 027 (—0.32,0.87) 0.06 (—0.84, 0.95) 093 —-0.08 (—047,031)
Model 2 f 0 (reference) 0.24 (-0.35, 0.84) 0.02 (—0.86, 0.90) 0.99 —0.09 (- 048,029
Model 3 ¢ 0 (reference) 029 (=031, 0.89) 0.16 (- 0.73, 1.05) 0.75 —0.04 (- 043, 035)
Time to walk 4 m (sec) ¢
Model 1 € 0 (reference) —0.04 (- 0.14, 0.07) —0.05 (- 0.18, 0.09) 049 —-0.03 (= 0.09, 0.02)
Model 2 f 0 (reference) —0.05 (- 0.15, 0.05) —0.07 (- 0.20, 0.06) 032 —-0.04 (- 0.10, 0.01)
Model 3 9 0 (reference) —0.06 (= 0.16, 0.05) —0.07 (= 0.21, 0.06) 0.27 -0.04 (- 0.10,0.01)
Grip strength ©
Model 1 € 0 (reference) 0.09 (-0.32, 0.49) —0.001 (- 0.56, 0.55) 0.98 0.03 (=0.19, 0.25)
Model 2 f 0 (reference) 0.12 (-0.28,0.52) 0.07 (-048,061) 0.83 0.06 (-0.16, 0.27)
Model 3 9 0 (reference) 0.12 (-0.27, 0.52) 0.06 (—0.48, 0.60) 0.84 0.05 (-0.16, 0.26)
Short Physical Performance Battery (SPPB)
Model 1 € 0 (reference) —0.01 (- 0.16,0.14) 0.0003 (- 0.20, 0.20) 0.99 0.02 (- 0.06, 0.10)
Model 2 f 0 (reference) 0.02 (-0.13,0.17) 0.05 (—0.15, 0.25) 0.61 0.04 (- 0.04,0.12)
Model 3 9 0 (reference) 0.02 (-0.12,0.17) 0.05 (=0.15, 0.25) 0.63 0.04 (=0.04, 0.12)
Mini-mental state exam (MMSE) ©
Model 1 € 0 (reference) —-0.11 (- 0.27, 0.05) —0.04 (- 0.25,0.18) 0.77 0.002 (- 0.08, 0.08)
Model 2 f 0 (reference) —-0.11 (= 0.27, 0.05) —0.03 (- 0.24,0.19) 0.85 0.01 (-=0.07, 0.08)
Model 3 ¢ 0 (reference) —-0.11 (- 0.27, 0.06) —0.03 (- 0.25,0.19) 081 0.002 (- 0.08, 0.09)
Depression score (CESD) d
Model 1 € 0 (reference) —0.04 (- 0.23, 0.14) —0.05 (- 0.26, 0.17) 0.68 —0.04 (- 0.12, 0.05)
Model 2 0 (reference) —0.06 (- 0.25, 0.13) —0.07 (= 0.29, 0.15) 0.53 —0.04 (= 0.13,0.04)
Model 3 9 0 (reference) —0.07 (- 0.25,0.12) —0.09 (- 031, 0.13) 040 —0.05 (- 0.14, 0.03)

@ Results are presented as beta-coefficients (95% Cl) derived from multivariable linear regression models. Sufficient 25(0H) D > 30 ng/mL was the reference for the

intermediate and deficient 25(0H) D categories

P SD 25(0OH) D = 8.4 ng/mL; To covert 25(0H) D from ng/mL to nmol/L, multiply by 2.496

€ For FAQ score, grip strength, SPPB, and MMSE: a higher value indicates a more favorable performance/measure

9 For time to walk 4 m and CESD: a lower value indicates a more favorable performance/measure

€ Model 1: adjusted for age, sex, race/center, educational, body mass index, smoking status, alcohol consumption, physical activity, and APOE €4 genotype

f Model 2: Model 1 plus systolic blood pressure, use of hypertension medication, total and HDL cholesterol, use of cholesterol medications, diabetes, coronary

heart disease, and estimated glomerular filtration rate

9 Model 3: Model 2 plus serum parathyroid hormone, calcium, and phosphorus concentrations

outside of the visit and included individuals who were
unable or unwilling to attend the in-person visits. We
did account for this attrition for the in-person visits with
multiple imputation using methods previously validated
in ARIC [40]; however some selection bias may have
remained. It is possible that 25(OH) D is associated with
dementia through other vascular mechanisms not cap-
tured by these neuropsychological and functional tests.
Or it is possible that the association of 25(OH) D and
incident dementia may be due to residual confounding
in this observational study, despite our efforts to

perform robust statistical adjustment for a number of
key confounding factors.

The VITamin D and OmegA-3 Trial. (VITAL), which
randomized over 20,000 community-dwelling adults
aged >50 years to a higher dose of vitamin D supplemen-
tation (2000 IU/day) vs. placebo, will further evaluate the
role of vitamin D supplementation for the prevention of
cognitive decline [49]. Note that the VITAL trial recently
reported that vitamin D supplementation did not reduce
incident cardiovascular disease or cancer outcomes [50],
but the cognitive outcomes have not yet been reported.
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Table 5 Associations ® of Mid-Life (1990-1992) 25(0OH) D Concentrations with Incident Dementia, the ARIC Study

25(0H) D (ng/mL) p- Per 1 SD

>30 20-<30 <20 trend gg%ﬂ?gﬁ n
N 3046 5759 4234 - 13,039
Case, n (%) 271 (8.9%) 600 (10.4%) 452 (10.7%) - 1323 (10.1%)
Incidence rate (95% Cl) ° 4.83 (4.29, 544) 5.73 (528, 6.20) 6.07 (5.54, 6.66) - 562 (533, 5.93)
Model 19 Reference [1] 1.12 (0.97, 1.30) 1.26 (1.06, 1.49) 0.01 1.05 (0.98, 1.12)
Model 2 © Reference [1] 1.12 (097, 1.30) 1.25 (1.05, 1.48) 0.01 1.04 (098, 1.12)
Model 3 Reference [1] 1.12 (0.97, 1.30) 1.24 (1.05, 1.48) 0.01 1.04 (098, 1.11)

@ Results presented as Hazard Ratios (95% Confidence Intervals). Data in bold text are statistically significant, P < .05

® unadjusted and per 1000 person-years

€ SD 25(0OH) D =8.4 ng/mL;To covert 25(0H) D from ng/mL to nmol/L, multiply by 2.496
9 Model 1: adjusted for age, sex, race/center, educational, body mass index, smoking status, alcohol consumption, physical activity, and APOE &4 genotype
€ Model 2: Model 1 plus systolic blood pressure, use of hypertension medication, total and HDL cholesterol, use of cholesterol medications, diabetes, coronary

heart disease, and estimated glomerular filtration rate

f Model 3: Model 2 plus serum parathyroid hormone, calcium, and phosphorus concentrations

The Study to Understand Vitamin D and Fall Reduction
in You (STURDY) is an on-going randomized clinical
trial investigating the role of vitamin D supplements (at
doses ranging from 200 to 4000IU/day) on the out-
comes of functional measures (short physical perform-
ance battery, gait speed, and grip strength) and incident
falls [16], which will also be informative when published.

In older adults, lower 25(OH) D concentrations have
also been shown to be cross-sectionally associated with
depressive symptoms [51, 52]. Tryptophan hydroxylase 2
(the catalyst which produces serotonin, a neurotransmit-
ter implicated in the pathogenesis of depression, from
tryptophan) has been found to be modulated by 25(OH)
D [53]. However, a prior study of older adults (the
Pro.V.A. Study) only found 25(OH) D to be cross-
sectionally but not longitudinally associated with depres-
sive symptoms [52]. In another analysis of older women
enrolled in the Women’s Health Initiative Observational
Study, higher vitamin D intake from food sources was
associated with a lower risk of depression after 3 years;
however supplementation with vitamin D (400 IU/day)
in the Women’s Health Initiative randomized clinical
trial was not associated with depression score [54]. In
this current analysis from ARIC, we did not find any as-
sociation of mid-life 25(OH) D with late-life depression
score (assessed by CESD). The VITAL clinical trial men-
tioned above, evaluating a higher dose of vitamin D sup-
plements (2000 IU/day) vs. placebo, will provide further
understanding of the role of vitamin D for the preven-
tion of depression in mid-life and older adults [55].

Strengths and limitations

Our study has several limitations, which should be noted.
First, we had only one measure of 25(OH) D in mid-life
for the whole cohort (which we seasonally-adjusted); how-
ever 25(OH) D concentrations may vary over time and
one-time measurements may not be reflective of

concentrations at the time outcomes were ascertained.
We also examined the use of vitamin D supplementation
across visits (i.e. ARIC visits 2—5) and found little to no
significant differences in proportion of participants who
were on supplementation across baseline 25(0OH) D
groups at a given ARIC visit. Additionally, vitamin D sup-
plement use was very infrequent at ARIC visit 2 (baseline
for this analysis), at <2%. Second, we imputed outcomes
for a large number of participants not present at the
ARIC-NCS visit. Nevertheless, “complete-case” results for
participants present at the ARIC-NCS visit (visit 5) were
very similar to those obtained from our imputation. We
performed numerous linear regression models for a large
battery of neuropsychological/functional tests and any sig-
nificant associations may have been found by chance;
however our findings for the neuropsychological/func-
tional tests were largely null, so correcting for multiple
testing would only further emphasize the null relation-
ships noted. Other factors that might be associated with
dementia (such as homocysteine, folate, B-vitamins, diet-
ary intake of dairy products and fatty fish etc.) were not
measured in ARIC at visit 2. (A food frequency question-
naire was administered only at ARIC visit 1 and 3). Thy-
roid stimulating hormone (TSH) was measured but it was
not associated with 25(OH) D after adjustment for age,
race, and sex.

Importantly though, our study has many strengths. In
the well-characterized ARIC cohort, we were able to
evaluate the association of mid-life 25(OH) D concentra-
tions with a large battery of neuropsychological and
functional tests conducted approximately 20-years later,
as well as incident dementia outcomes over this same
period. We measured 25(OH) D in mid-life when our
participants were free from dementia and assessed out-
comes in later life (~ 20 years), thereby limiting the effect
of reverse causation, a problem which has plagued many
other studies. We accounted for numerous potentially
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confounding lifestyle variables which have been found to
be associated with serum 25(OH) D concentrations [56]
and increased risk of dementia such as increasing age,
black race, physical activity etc. as well as for the APOE
€4 genotype [57]. Individuals in poorer health states may
be less likely to participate in outdoor physical activity
and thus more likely to be 25(OH) D deficient. Never-
theless, despite robust adjustment, residual confounding
may still explain associations see with incident dementia.
Finally, our method of dementia ascertainment may be
more comprehensive than other studies because in
addition to review of medical and death certificate re-
cords, an in-person neuropsychological assessment, in-
formant interview, and expert review were all used to
adjudicate the cases of dementia [31-35].

Conclusions

In conclusion, we found lower concentrations of 25(OH)
D in mid-life were not associated with an extensive bat-
tery of neuropsychological, functional, and depression
testing in late-life, but were associated with incident de-
mentia in this biracial cohort. Although our long-term
prospective design makes reverse causation unlikely, re-
sidual confounding may still explain associations seen. It
is difficult to explain the association of serum 25(OH) D
with dementia, given the lack of association of 25(OH)
D concentrations with well-measured cognitive testing
spanning 20vyears [8]. Low serum concentrations of
25(0OH) D may simply be a surrogate marker of a poorer
health status. The VITAL interventional trial of vitamin
D supplements (at 2000IU/day) vs placebo failed to
show a reduction in cancer or cardiovascular outcomes
[50], but the cognitive and depression outcomes from
VITAL have not yet been reported. Thus, whether the
association with incident dementia is causal, or due to
another process, is unclear and warrants further study in
the on-going interventional trials.
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