Alzakerin et al. BMC Neurology (2019) 19:316

https://doi.org/10.1186/512883-019-1545-6 BMC Neuro | Ogy

RESEARCH ARTICLE Open Access

Autoregressive modeling to assess stride ®
time pattern stability in individuals with
Huntington’s disease

Helia Mahzoun Alzakerin, Yannis Halkiadakis and Kristin D. Morgan*®

Check for
updates

Abstract

Background: Huntington’s disease (HD) is a progressive, neurological disorder that results in both cognitive and
physical impairments. These impairments affect an individual’s gait and, as the disease progresses, it significantly
alters one’s stability. Previous research found that changes in stride time patterns can help delineate between
healthy and pathological gait. Autoregressive (AR) modeling is a statistical technique that models the underlying
temporal patterns in data. Here the AR models assessed differences in gait stride time pattern stability between the
controls and individuals with HD. Differences in stride time pattern stability were determined based on the AR
model coefficients and their placement on a stationarity triangle that provides a visual representation of how the
patterns mean, variance and autocorrelation change with time. Thus, individuals who exhibit similar stride time
pattern stability will reside in the same region of the stationarity triangle. It was hypothesized that individuals with
HD would exhibit a more altered stride time pattern stability than the controls based on the AR model coefficients
and their location in the stationarity triangle.

Methods: Sixteen control and twenty individuals with HD performed a five-minute walking protocol. Time series’
were constructed from consecutive stride times extracted during the protocol and a second order AR model was fit
to the stride time series data. A two-sample t-test was performed on the stride time pattern data to identify
differences between the control and HD groups.

Results: The individuals with HD exhibited significantly altered stride time pattern stability than the controls based
on their AR model coefficients (ART p < 0.001; AR2 p < 0.001).

Conclusions: The AR coefficients successfully delineated between the controls and individuals with HD. Individuals
with HD resided closer to and within the oscillatory region of the stationarity triangle, which could be reflective of
the oscillatory neuronal activity commonly observed in this population. The ability to quantitatively and visually
detect differences in stride time behavior highlights the potential of this approach for identifying gait impairment
in individuals with HD.
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Background
Huntington’s disease (HD) is a fatal neurodegenerative
disorder for which there is presently no cure [1-4]. This
neurodegenerative disorder leads to both cognitive and
physical impairments due to the degeneration of nerve
cells in the brain [3-5]. Gait, which is governed by the
neuromuscular system, is altered due to these impair-
ments that often manifest as reductions in gait speed, di-
minished step height and length and increased stride
time variability [1, 5-7]. Unfortunately, as the disease
progresses, these conditions intensify and significantly
alter an individual’s gait stability [5, 6, 8]. Previous stud-
ies have related reduced stability in individuals with HD
to an increased fall risk resulting from elevated stride
time variability [8—10]. Nevertheless, a more direct rela-
tionship between temporal stride time patterns and gait
stability has not, to our knowledge, been extensively ex-
plored. Therefore, this study sought to examine differ-
ences in stride time pattern stability between controls
and individuals with HD using time series modeling.
Researchers traditionally employ metrics; such as, the
standard deviation and coefficient of variation, to quan-
tify gait variability in individuals with pathological condi-
tions [7, 8, 11]. While these techniques successfully
identify the magnitude of the variability, Hausdorff et al.
(1997) found that there was also an underlying temporal
pattern in stride time data that has not often been
accounted for in this pathological population [7]. That
study used Detrended Fluctuation Analysis (DFA) to
show that stride time interval patterns were less corre-
lated in individuals with HD as compared to controls
groups [7]. DFA was able to identify such pattern trends
by evaluating self-similarity among respective time series
[12, 13]. Autoregressive (AR) modeling also assesses the
strength of the self-similarity within a time series but
additionally reveals a feature about dynamic stability [12,
13]. In AR modeling, a time series is dynamically stable
if it is stationary [12, 13]. Stationary means that the time
series’ mean, standard deviation and autocorrelation
(self-similarity) do not change over time [12, 13]. There-
fore, dynamically stable stride time patterns will exhibit
constant stride times with no growth or decrease in
stride time variability and a constant repeating pattern.
The AR model coefficients capture these time series dy-
namics and are mapped to a stationarity triangle to visu-
ally denote how close their dynamics place them to
critical transition states, which are the unstable or oscil-
latory states [12, 13]. The advantage of AR modeling is
that the visual nature of the stationarity triangle allows
individuals to not only denote if their dynamics are
stable but how close their dynamics are to becoming un-
stable or oscillatory in nature. Exploiting this feature of
AR modeling is the expressed aim of the current
investigation.
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AR modeling has successfully identified respiratory
rates and fatigue levels from physiological signals, iso-
lated differences in movement strategies from force data,
and evaluated postural stability and identified fall risk
from gait patterns [14-20]. The latter studies highlight
how constructing a time series out of more traditional
biomechanical measurements and characterizing its dy-
namics using the AR coefficients can help identify
changes in movement pattern stability that are indicative
of fall risk. Increased fall risk, which is also a concern for
individuals with HD, is attributed to motor control defi-
cits that are prevalent in this population [6, 21, 22].
These deficits cause abnormal involuntary movement
(chorea) and an inability to regulate the timing of gait
events; such as; stride times [6, 21-23]. Since AR model-
ing defines the current value as function as the previous
values; changes in the relationship of current and past
stride times; captured by the AR model coefficients, will
provide insight into stride time regulation and motor
control. Furthermore, the ability of AR coefficients to
denote the transition to either oscillatory dynamics,
which could present as abnormal involuntary movement,
or unstable dynamics that could indicate elevated fall
risk, indicate how the AR coefficients can detect motor
control deficits in individuals with HD via stride time
patterns.

The objective of this study was to use AR modeling to
evaluate differences in stride time pattern between indi-
viduals with HD and controls during walking. Stride
time pattern stability was deduced from the AR model
coefficients for the individuals in the respective groups.
It was hypothesized that individuals with HD would ex-
hibit altered stride time pattern stability and reside in
different locations within the stationarity triangle. The
ability to delineate these differences would demonstrate
how AR modeling can be used as a non-invasive diag-
nostic tool to help monitor disease progression.

Methods

The data analyzed in this study was collected by re-
searchers at the Massachusetts General Hospital (MGH)
where they recruited participants from the Neurology
Outpatient Clinic to perform a walking protocol [7].
Every participant provided written consent to participate
in the study in accordance with the MGH institutional
review board [7]. The researchers provided access to the
deidentified study data on an online database (https://
www.physionet.org/physiobank/database/gaitndd/). The
data from that database was used for this analysis [7].

Instrumented gait analysis

Sixteen control (height 1.8 +0.1 m; mass 66.8 £ 11.1 kg;
age 39.3 + 18.5 yrs.; speed 1.4 + 0.2 m/s) and twenty indi-
viduals with HD (height 1.8 + 0.1 m; mass 72.1 + 17.0 kg;
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age 47.7£12.6yrs; speed 1.1+0.3m/s) performed a
walking .protocol. The participants were instructed to
walk at a self-selected speed along a hallway that was 77
m in length. Once at the end of the hallway, participants
would turn around and walk back towards the other
end. Each participant walked up and down the hallway
for 5 min. The control participants were free of any
neurological and physical conditions that would prevent
them from participating or alter their ability to perform
the walking protocol. Neurologist from the clinic
assessed the individuals with HD. The severity of HD
was evaluated using the total functional capacity (TFC)
score from the Unified Huntington’s Disease Rating
Scale. The TFC score ranges from 0 to 13 where a 0 in-
dicates individuals with the most severe impairments,
and a 13 indicates individuals with little to no impair-
ment [7, 24].

Force sensitive resistors were embedded in the individ-
ual’s shoes. These resistors measured the force produced
during each step and was collected at 300 Hz. These re-
sistors allowed the researchers to record gait data. From
this gait data, the researchers were able to identify initial
contact and toe off and these measurements allowed for
the identification and extraction of stride interval data.

Time series stability analysis

The consecutive stride times from the five-minute walking
protocol were combined to form a time series for each in-
dividual (Fig. 1). The first step in the AR model analysis
involved subtracting a linear trend from the stride time
interval time series. Next, a second order AR model
(AR(2)) was fit to the detrended time series (Eq. 1).

Ve =0+@1y 1+ Doy st & (1)

Here y, represents the current value, y,_; and y, _, are
the values of the two previous time steps, @, and @, are
the AR1 and AR2 coefficients, respectively, for the two
previous time steps, J is a model constant and &, is white
noise [12, 13]. The order of the AR model was deter-
mined from the results of the autocorrelation function
(ACF) and partial autocorrelation (PACF) function plots
[12, 13]. The AR model coefficients indicate how
strongly correlated the current value is with the previous
two values and shows how well the previous states pre-
dict the current model state. Furthermore, the AR coeffi-
cients indicate if and how quickly the time series is
transitioning into a nonstationary process. A time series
is stationary if the mean, variance and autocorrelation
behavior remain constant over time [12, 13]. Since the
time series are constructed from stride times, the AR
model coefficients represent the gait dynamics. The two
coefficients obtained from the AR(2) model, ARl and
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Fig. 1 Walking stride time interval patterns for an individual in the
(@) control group and (b) an individual in the HD group. Each figure
represents the constructed stride time interval time series, which
plotted the strides as a function of stride time

AR2, were used as the x-axis and y-axis coordinates, re-
spectively, of the point plotted on the stationarity
triangle.

The stationarity triangle is used to evaluate the behav-
ior and stability of a time series. Any point that lies out-
side of the stationarity triangle indicates that the time
series produces unstable dynamics [12, 13]. For those
points that lie within the stationarity triangle, there are
two possible stable dynamic outcomes. Those points that
lie within the semicircle inside of the stationarity triangle
produce an oscillatory response that generates stable
harmonic motion [12, 13]. Points that lie external to the
semicircle indicate a non-oscillatory response and repre-
sent stable damped motion that possesses two embedded
time constants [12, 13]. The distance from the points to
the centroid of the stationarity triangle at (0, -1/3),
which resides in the oscillatory region, is used to indi-
cate the stability and dynamic behavior of the time
series. Distances closer to the centroid indicate that the
time series is stable and exhibits more oscillatory behav-
ior and the distances further away from the centroid in-
dicate that the time series is stable but exhibits non-
oscillatory behavior. The distance metric is unitless be-
cause the AR(2) coefficients, from which the distance is
calculated, are dimensionless. Ellipses are drawn around
the controls and HD individuals, respectively, to further
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delineate the different dynamic responses between the
two groups. These ellipses encircled 95% of the individ-
uals in their respective groups. All of the aforementioned
analyses were conducted using a custom MATLAB code
(MATLAB R2018a, The MathWorks, Inc., Natick Mas-
sachusetts, USA).

Statistical analysis

A two-sample t-test was conducted to test the hypoth-
esis that there were no differences in the means in mean
age, height, mass, gait speed, stride time, and stability
metrics - AR1, AR2 and AR stability distance — between
the controls and individuals with HD (a =0.05). The
performance of the metrics was based on model accur-
acy, specificity and sensitivity. All statistical analyses
were conducted in Minitab (Minitab 16, Minitab Inc.,
State College, Pennsylvania, USA.).

Results

No differences in age, height, and mass were found be-
tween the controls and individuals with HD (Table 1).
However, the individuals with HD walked at 1.1 + 0.3 m/
s which was significantly slower (p = 0.04) than the con-
trols who walked at 14+02m/s (Table 1).
Consequently, the individuals with HD had significantly
(p =0.04) longer stride times (1.2 £ 0.2s) than the con-
trols (1.1 +£0.1s) (Table 2). This indicated that while the
individuals with HD walked at a slower speed, they ex-
hibited greater stride time variability than the controls
as noted in the standard deviation values.

The individuals with HD exhibited significantly
different stride time pattern stability than the controls
(p <0.001) based on the AR1, AR2 and the AR distance
metrics (Table 2). The individuals with HD exhibited
more oscillatory stride time patterns than the controls,
who exhibited non-oscillatory behavior, as determined
by their location in the stationarity triangle (Fig. 2). The
controls were significantly further away from the
centroid of the triangle in both the AR1 or x-direction
and AR2 or y-direction than the individuals with HD
(p<0.001; p<0.001). The individuals with HD also

Table 1 Comparison of participant demographics. (Mean +
Standard Deviation)

Variable Control Group HD Group P-value
Age (years) 3934185 477+126 0.17
Height (m) 1.8+£0.1 1.8+£0.1 0.94
Mass (kg) 668+ 11.1 721£170 0.30
Speed (m/s) 14+02 1.1+03 0.04*
Total Functional Capacity 6.8+39

Gender (Female:Male) 14:2 14:6

* Denotes that the means between the two groups were significantly
different (a=0.05)
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Table 2 Comparison of stride time intervals, autoregressive
modeling coefficients and distance metrics. (Mean + Standard
Deviation)

Variable Control Group HD Group P-value
Stride Time (s) 1.1+0.1 12+02 0.04*
AR 1 Coefficient 04 £ 0.1 01+£02 <0.001*
AR 2 Coefficient 0.1 £01 0.0+ 0.1 <0.001*
AR Distance 06+ 0.1 04 +0. <0.001*

* Denotes that the means between the two groups were significantly
different (a=0.05)

exhibited more variability in the AR1 direction than the
controls. Overall, the control individuals were located
0.6 £ 0.1 away from the centroid of the triangle and the
individuals with HD were 0.4 + 0.1 away from the cen-
troid (p < 0.001) (Table 2). Eighty percent of the individ-
uals who exhibited reduced cognitive and physical
impairment resided outside of the oscillatory region
while 60% of the individuals who exhibited higher cogni-
tive and physical impairment resided inside of the oscil-
latory region.

Discussion

The objective of the study was to evaluate stride time
pattern stability in controls and individuals with HD
using AR modeling. The results supported the hypoth-
esis as the individuals with HD exhibited significantly al-
tered stride time pattern stability compared to the
controls based on their location in the stationarity tri-
angle. The individuals with HD resided closer to and in-
side of the semicircle of the stationarity triangle
indicating that they exhibited more oscillatory stride
time dynamics than the controls, who resided in the
non-oscillatory region. This oscillatory behavior ob-
served in the individuals with HD is consistent with pre-
vious research where they described similar oscillatory
behavior in the same population as increased fluctua-
tions and variability [7]. These changes in gait behavior
are characteristic of individuals with HD who exhibit im-
paired and jerky movements [1, 25]. The AR modeling
technique was able to both quantify and visually delin-
eate differences in stride time stability between the con-
trols and individuals with HD and further determined
that those individuals exhibited oscillatory stride time
dynamics.

HD affects the basal ganglia in the brain which is re-
sponsible for regulating the control of voluntary move-
ments such as walking [25-27]. In the basal ganglia, the
presence of HD is denoted by increased oscillatory neur-
onal activity, which here was observed as oscillatory
stride time pattern stability [25, 27]. The oscillatory mo-
tion represents an inability to voluntary control one’s
movements and indicates the presence of chorea or dys-
tonia in the individual [28, 29]. Chorea and dystonia
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Fig. 2 Comparison of stride time patterns for controls and individuals with HD on the AR(2) stationarity triangle. The blue circles represent the
control individuals and pink squares represent the individuals with HD. The semicircle denotes the edges of the oscillatory region. The blue and
pink ellipses encompass 95% of the individuals in the control group and the Huntington’s group, respectively

0
AR1

indicate the degeneration of nerve cells in the brain and as
the disease progresses it is possible to observe an increase
in oscillatory movement which more than likely would be
associated with a lower TFC value [7, 24]. Given that indi-
viduals with HD who exhibit oscillatory gait patterns clus-
tered near the oscillatory region of the stationarity
triangle, this finding demonstrates that this diagram could
be used track the progression of neurodegeneration
through the 5 stages of HD. Furthermore, the fact that the
majority of individuals with HD who are identified as hav-
ing low physical and cognitive impairment based on the
TEC scale resided outside of the oscillatory region and
outside of the control region indicates that this tool is able
to identify changes in motor control. Since the AR model-
ing coefficients were able to accurately identify and visu-
ally delineate differences in gait dynamics between the
two groups supports this metric as a more quantitative
and evaluative tool to monitor disease progression as it re-
lates to gait disturbance.

Chorea and dystonia, which are responsible for invol-
untary, abnormal movements, have a debilitating effect
on individuals with HD motor control and contributes
to their difficulty in regulating the timing of gait events
[6, 21]. Thus, analyzing stride time dynamics provides a
non-invasive way to evaluate the effect of chorea and
dystonia on motor control. AR modeling was an appro-
priate technique because its coefficients indicate the
strength of the relationship between the current and
previous stride times. The smaller AR coefficients mag-
nitude in the HD group indicated reduced consistency
in the temporal stride time patterns which is in line with
the poor regulation of the timing of gait events that pla-
gues this population [21].

The study is not without its limitations. First, individuals
with HD walked significantly slower than the controls and
had significantly slower stride times, which could be as-
sumed to influence their stride time stability. While de-
creased gait speed is associated with individuals with HD,
it did not influence the AR model results. The AR model
assessed the stride time pattern, not the mean stride time.
Furthermore, the trend was removed from the time series
prior to the AR modeling analysis, therefore, the AR
model only evaluated how the stride times changed from
step to step. Second, a few of the individuals with HD re-
sided in the same region of the stationarity triangles as the
controls. However, these individuals were found to have
higher TFC scores, which indicated reduced or no cogni-
tive and physical impairments. Third, a secondary analysis
that compared those with amyotrophic lateral sclerosis
(ALS) and Parkinson’s to controls did not reveal the same
level of discrimination as the individuals with HD did
when also using AR modeling. The alternate dispersion
patterns of the ALS and Parkinson’s groups may indicate
how motor control is altered differently amongst individ-
uals in these groups. However, AR modeling is an estab-
lished statistical technique that has been utilized to
identify alternate movement patterns and motor controls
in different populations [12-20].

The results of the study established how AR modeling
can be used to delineate differences in stride time pat-
tern stability between controls and those with HD. Indi-
viduals with HD exhibited altered stride time stability
compared to the controls. Their altered stride time pat-
tern was oscillatory in nature and was reflective of the
oscillatory brain activity previously measured in individ-
uals in this population. The sensitivity of this metric to
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detecting these changes in gait patterns suggests it could
be very beneficial in helping to monitor individuals with
different pathological conditions. Future work should in-
vestigate the AR model’s ability to identify differences in
gait patterns among groups with different pathological
conditions.

Conclusions

The purpose of this study was to evaluate stride time pat-
tern stability in controls and individuals with HD via AR
modeling. AR modeling was able to both quantitively and
visually delineate differences in gait patterns between the
controls and HD. Specifically, the AR modeling was able
to detect oscillatory movement patterns in those with HD.
These findings indicate how AR coefficients could be used
to help monitor disease progression.

Abbreviations
AR: Autoregressive; HD: Huntington's disease

Acknowledgements

I'would like to acknowledge Dr. JM Hausdorff, A Lertratanakul, ME
Cudkowicz, AL Peterson, D Kaliton, AL Goldberger, SL Mitchell, R Firtion, CK
Peng, and JY Wei for providing the data for this manuscript on PhysioNet.

Authors’ contributions

HMA was responsible for the computational and statistical analyses and the
writing of the work that was presented. YH was responsible for the
computational and statistical analyses and the writing of the work that was
presented. KDM was responsible for the organization, computational and
statistical analyses and the writing of the work that was presented. All
authors read and approved the final manuscript.

Funding
The work in this manuscript was not funded.

Availability of data and materials

The deidentified datasets generated and/or analyzed during the current
study are available in the PhysioNet Database repository, https://www.
physionet.org/physiobank/database/gaitndd/.

Ethics approval and consent to participate

The deidentified data in this study was obtained by researchers at the
Massachusetts General Hospital (MGH). All of the participants provided
written consent in accordance with Massachusetts General Hospital
institutional review board and the Committee on Clinical Investigations of
Beth Israel Hospital.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 15 November 2018 Accepted: 27 November 2019
Published online: 09 December 2019

References

1. Casaca-Carreira J, Temel Y, Van Zelst M, Jahanshahi A. Coexistence of gait
disturbances and chorea in experimental Huntington’s disease. Behav
Neurol. 2015;2015:6.

2. Jones C, Busse M, Quinn L, et al. The societal cost of Huntington’s disease:
are we underestimating the burden? Eur J Neurol. 2016;23(10):1588-90.

3. Reiner A, Dragatsis |, Dietrich P. Genetics and neuropathology of
Huntington'’s disease. In Int Rev Neurobiol. 2011;98:325-72.

Page 6 of 6

4. Reynolds NC, Myklebust JB, Prieto TE, Myklebust BM. Analysis of gait
abnormalities in Huntington disease. Arch Phys Med Rehabil. 1999,80(1):59-
65.

5. Danoudis M, lansek R. Gait in Huntington's disease and the stride length-
cadence relationship. BMC Neurol. 2014;14(1):161.

6. Grimbergen YA, Knol MJ, Bloem BR, Kremer BP, Roos RA, Munneke M. Falls
and gait disturbances in Huntington'’s disease. Mov Disord. 2008;23(7):970-6.

7. Hausdorff JM, Mitchell SL, Firtion R, Peng CK, Cudkowicz ME, Wei JY,
Goldberger AL. Altered fractal dynamics of gait: reduced stride-interval
correlations with aging and Huntington'’s disease. J Appl Phys. 1997,82(1):
262-9.

8. Kloos AD, Kegelmeyer DA, White SE, Kostyk SK. The impact of different
types of assistive devices on gait measures and safety in Huntington’s
disease. PLoS One. 2012,7(2):230903.

9. Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in
community-living older adults: a 1-year prospective study. Arch Phys Med
Rehabil. 2001;82(8):1050-6.

10.  Kloos AD, Kegelmeyer DA, Young GS, Kostyk SK. Fall risk assessment using
the Tinetti mobility test in individuals with Huntington's disease. Mov
Disord. 2010;25(16):2838-44.

11, Hollman JH, Kovash FM, Kubik JJ, Linbo RA. Age-related differences in
spatiotemporal markers of gait stability during dual task walking. Gait
Posture. 2007,26(1):113-9.

12. Box GEP, Jenkins GM. Time series analysis: forecasting and control, revised
ed. San Francisco: Holden-Day; 1976.

13. Montgomery DC, Jennings CL, Kulahci M. Introduction to time series
analysis and forecasting. Hoboken: Wiley; 2008.

14.  Koontz AM, Cooper RA, Boninger ML. An autoregressive modeling approach
to analyzing wheelchair propulsion forces. Med Eng Phys. 2001;23(4):285-91.

15. Lee J, Chon KH. An autoregressive model-based particle filtering algorithms
for extraction of respiratory rates as high as 90 breaths per minute from
pulse oximeter. IEEE Trans Biomed Eng. 2010;57(9):2158.

16. Morgan KD. Autoregressive modeling as diagnostic tool to identify post
anterior cruciate ligament reconstruction limb asymmetry. J Appl Biomech.
2019:1-5. https://doi.org/10.1123/jab.2018-0414.

17. Paiss O, Inbar GF. Autoregressive modeling of surface EMG and its spectrum
with application to fatigue. IEEE Trans Biomed Eng. 1987;10:761-70.

18.  Kuczynski M. The second order autoregressive model in the evaluation of
postural stability. Gait Posture. 1999;,9(1):50-6.

19.  Kuczynski M, Ostrowska B. Understanding falls in osteoporosis: the
viscoelastic modeling perspective. Gait Posture. 2006;23(1):51-8.

20. Lai DT, Begg RK, Taylor S, Palaniswami M. Detection of tripping gait patterns
in the elderly using autoregressive features and support vector machines. J
Biomech. 2008;41(8):1762-72.

21. Bilney B, Morris ME, Churchyard A, Chiu E, Georgiou-Karistianis N. Evidence
for a disorder of locomotor timing in Huntington's disease. Mov Disord.
2005;20(1):51-7.

22, Khalil H, Quinn L, van Deursen R, Dawes H, Playle R, Rosser A, Busse M.
What effect does a structured home-based exercise programme have on
people with Huntington'’s disease? A randomized, controlled pilot study.
Clin Rehab. 2013;27(7):646-58.

23. Delval A, Krystkowiak P, Blatt JL, Labyt E, Bourriez JL, Dujardin K, Destée A,
Derambure P, Defebvre L. A biomechanical study of gait initiation in
Huntington'’s disease. Gait Posture. 2007;25(2):279-88.

24. Biglan KM, Zhang Y, Long J, et al. Refining the diagnosis of Huntington
disease: the PREDICT-HD study. Front Aging Neurosci. 2013;5:12.

25. Wichmann T, Dostrovsky JO. Pathological basal ganglia activity in
movement disorders. Neuroscience. 2011;198:232-44.

26. Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of
bradykinesia in Parkinson’s disease. Brain. 2001;124(11):2131-46.

27. Hell F, Plate A, Mehrkens JH, Botzel K. Subthalamic oscillatory activity and
connectivity during gait in Parkinson’s disease. Neuroimage Clin. 2018;19:
396-405.

28. Janavas JL, Aminoff MJ. Dystonia and chorea in acquired systemic disorders.
J Neurol Neurosurg Psychiatry. 1998,65(4):436-45.

29. Quinn L, Busse M. Physiotherapy clinical guidelines for Huntington’s disease.
Neurodegener Dis Manag. 2012;2(1):21-31.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://www.physionet.org/physiobank/database/gaitndd/
https://www.physionet.org/physiobank/database/gaitndd/
https://doi.org/10.1123/jab.2018-0414

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Instrumented gait analysis
	Time series stability analysis
	Statistical analysis

	Results
	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

