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Effect of brain-computer interface training
based on non-invasive
electroencephalography using motor
imagery on functional recovery after stroke -
a systematic review and meta-analysis
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Abstract

Background: Training with brain-computer interface (BCI) technology in the rehabilitation of patients after a stroke
is rapidly developing. Numerous RCT investigated the effects of BCI training (BCIT) on recovery of motor and brain
function in patients after stroke.

Methods: A systematic literature search was performed in Medline, IEEE Xplore Digital Library, Cochrane library, and
Embase in July 2018 and was repeated in March 2019. RCT or controlled clinical trials that included BCIT for
improving motor and brain recovery in patients after a stroke were identified. Data were meta-analysed using the
random-effects model. Standardized mean difference (SMD) with 95% confidence (95%CI) and 95% prediction
interval (95%PI) were calculated. A meta-regression was performed to evaluate the effects of covariates on the
pooled effect-size.

Results: In total, 14 studies, including 362 patients after ischemic and hemorrhagic stroke (cortical, subcortical, 121
females; mean age 53.0+/− 5.8; mean time since stroke onset 15.7+/− 18.2 months) were included. Main motor
recovery outcome measure used was the Fugl-Meyer Assessment. Quantitative analysis showed that a BCI training
compared to conventional therapy alone in patients after stroke was effective with an SMD of 0.39 (95%CI: 0.17 to
0.62; 95%PI of 0.13 to 0.66) for motor function recovery of the upper extremity. An SMD of 0.41 (95%CI: − 0.29 to
1.12) for motor function recovery of the lower extremity was found. BCI training enhanced brain function recovery
with an SMD of 1.11 (95%CI: 0.64 to 1.59; 95%PI ranging from 0.33 to 1.89). Covariates such as training duration,
impairment level of the upper extremity, and the combination of both did not show significant effects on the
overall pooled estimate.
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Conclusion: This meta-analysis showed evidence that BCI training added to conventional therapy may enhance
motor functioning of the upper extremity and brain function recovery in patients after a stroke. We recommend a
standardised evaluation of motor imagery ability of included patients and the assessment of brain function recovery
should consider neuropsychological aspects (attention, concentration). Further influencing factors on motor
recovery due to BCI technology might consider factors such as age, lesion type and location, quality of
performance of motor imagery, or neuropsychological aspects.

Trial Registration: PROSPERO registration: CRD42018105832.

Keywords: Stroke, Motor imagery, Brain computer interface training, Rehabilitation, Systematic review, Meta-analysis

Background
The prevalence of stroke and the number of patients
living with its consequences are increasing [1]. Advances
in medical management of patients with stroke over the
past decade have significantly reduced mortality, how-
ever, one third of the annually 16 million patients world-
wide remain disabled [2]. Thus, more efficient stroke
rehabilitation strategies are needed [1].
Brain-machine interfaces or brain-computer interfaces

(BCI) in particular, are novel technologies enabling inter-
action with an individual’s environment through brain sig-
nals [3]. This technology records physiological measures
of mental processes directly from the brain and decodes
them into control signals that can operate external devices
or a computer [4]. In recent years, such systems have been
further developed to help patients after a stroke to regain
their mobility and support motor function recovery by in-
ducing activity-dependent brain plasticity [5]. Different
types of input signals were used in development of clinical
practice and research projects to control BCI. About
76.1% off all BCI Research Award submissions during the
year 2015 used electroencephalography (EEG) based sys-
tems measuring motor imagery (MI) evoked potentials
[5]. Other devices using non-invasive sensor systems are:
Magnetoencephalography, functional Near-Infrared Spec-
troscopy and functional Magnetic Resonance Imaging. In-
vasive methods like subdural electrocorticography using
action potential, intracortical local field potentials, and
epidural field potentials [6] represent other possibilities
for input signal sensors.
Motor imagery (MI) can be defined as the mental repre-

sentation of movement without any overt body movement
[6, 7]. This involves a visual or mental representation with
or without a kinaesthetic feeling [6]. It is a complex cogni-
tive operation, which is self-generated from the patients
[8]. MI offers a unique opportunity for patients after a
stroke, who are unable to move their extremities by
attempting to stimulate the brain regions responsible for
motor movement. MI combined with conventional ther-
apy may improve outcomes more than conventional ther-
apy only [9, 10]. BCI training (BCIT) systems can use EEG
signals from MI performance with sensory real-time

feedback and decode these signals to enable patients to
direct devices such as personal computers, wheelchairs,
robots, and prosthetic devices including exoskeletons.
Some studies have investigated the efficacy of applying
BCIT using MI on motor recovery for patients with sub-
acute or chronic stroke with hemiparesis [3, 11–29].
Although these studies demonstrated a significant effect
on recovery, the studies were flawed by low number of
participants, low number of training sessions and/or a lack
of follow-up assessments [3, 11–29].
We assumed that the efficacy of BCIT added to con-

ventional therapy on motor function recovery of upper
and lower extremity and brain function recovery is more
beneficial than conventional therapy alone in patients
after a stroke. The overall aim of our systematic review
was to summarize the evidence from RCTs comparing
BCIT to other therapy methods in patients after a stroke
focusing on recovery of motor and brain function. The
systematic review and meta-analyses aimed to answer
the question: What is the effect of a brain-computer
interfaces-based training with non-invasive EEG using
MI on motor function and brain function recovery in
patients after a stroke? We hypothesized that BCI train-
ing added to conventional therapy for motor function
recovery of upper and lower extremity outperforms
training without BCI technology. Furthermore, brain
function recovery was evaluated as an objective param-
eter to indicate structural reorganisation in brain activ-
ity. Authors described different methods in their studies
how they measured brain function recovery. Physio-
logical measures that provide dynamic physiological
information about brain function allow researchers to
measure the contributions of various brain structures to
specific psychological processes while participants
complete motor or cognitive tasks. Functional brain
measurement techniques [30] can measure increased re-
gional blood flow, changes in oxygenation concentration
during neural activities, glucose level, and brain cells
communication by electrical impulses reflected by fluc-
tuating lines in EEG recordings. Structural brain mea-
surements [31] allow to examine the brain’s anatomical
structure and to evaluate anatomical references,
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including tissue atrophy and white matter integrity.
White matter integrity of premotor–motor connections
is associated with motor output in chronic stroke
patients [32].

Methods
The review protocol was prepared according to the pre-
ferred reporting items for systematic review and meta-
analysis protocols statements (PRISMA-P) [33] and was
registered with the International Prospective Register of
Systematic Reviews (PROSPERO, Registration number:
CRD42018105832). The systematic review report was
written following the Preferred Reporting Items for Sys-
tematic review and Meta-Analysis (PRISMA) guidelines
and the PRISMA checklist [34].

Search strategy, selection criteria and process
A systematic literature search was performed in Medline
via EBSCO-Host surface, IEEE Xplore Digital Library,
Cochrane library, and Embase. The US National Institute
of Health’s ongoing trial register ‘clinical.trials.gov‘was
searched to check for ongoing studies and unpublished re-
ports. The search was carried out in July 2018 by a re-
search librarian and was repeated for an update by the
first author in March 2019. The search terms, strategy,
and selection criteria are based on the PICOS system and
were adapted for each database (see Additional file 1).
Detailed inclusion criteria are listed in Table 1.
Our literature search was not restricted to any lan-

guages. All abstracts were available in English. None of
the selected abstracts or full texts were excluded due to
language. Studies were also excluded if they described
interventions with animals or when full texts from au-
thors were not available or were not formally peer
reviewed. To decrease the risk of missing relevant stud-
ies, reference lists in the included studies were screened.
Two independent reviewers (AK, ZS) screened for titles,
abstracts and citations after removing duplicates from
the eligible studies. To examine the agreement between
the two reviewers (AK, ZS) in the pre-testing phase, 10
% of all studies were randomly selected and screened by
both reviewers to check for congruence in selection.
After screening of the titles and abstracts, full texts were
evaluated. In case of disagreement, a third reviewer was
consulted (CS) to decide on inclusion or exclusion of

the study. Cohen’s Kappa statistic was used to evaluate
the reviewer agreement [35].

Data extraction
One researcher (AK) extracted the data from the se-
lected studies. Data were manually entered into a Micro-
soft Excel (Version 14.0, 2010, Microsoft Corp.,
Redmond, California, USA) spreadsheet. The data ex-
traction procedure was pilot tested on three studies,
then reviewed, discussed and adjusted in accordance be-
tween the two reviewers (AK, ZS). After the pilot test,
AK performed the complete data extraction and the sec-
ond reviewer (ZS) crosschecked all extracted data. If
needed, a consensus meeting and discussion resolved
disagreement. A detailed description of the data collec-
tion process and a complete overview of extracted data
are provided in Additional file 2. In case of incomplete
data (e.g. only graphical presentations, missing p-values)
in the selected studies, the corresponding authors were
contacted to obtain the missing details.

Assessment of risk of bias and GRADE
Two reviewers (AK, ZS) assessed risk of bias within
studies using the Cochrane Collaboration risk of bias
(RoB) 2.0 assessment [36]. Using the RoB 2.0 assessment
six domains of bias were rated for every study, each do-
main having three rating categories: low RoB, moderate/
some concerns RoB, and high RoB. One reviewer (AK)
applied the RoB 2.0 assessment tool to judge the risk of
over- or underestimating the effects of the intervention
for the outcomes used for the meta-analysis. A second
reviewer (ZS) crosschecked the completed RoB 2.0
assessment. Discussion between the reviewers (AK, ZS)
resolved disagreement if needed.
The Grades of Recommendation, Assessment, De-

velopment and Evaluation (GRADE) was used to rate
the overall quality of the evidence and the strength of
the recommendations [37] . In accordance with the
GRADE Working Group recommendations, the evi-
dence was classified on four levels of quality: very
low, low, moderate, and high quality. Moreover, pub-
lication bias was determined by computing a funnel
plot.

Table 1 Inclusion criteria based on PICOS-parameters

PICOS-Parameters Inclusion criteria

Population: Patients after a stroke (ischemic, hemorrhagic)

Intervention: Brain-Computer Interface, Brain-Machine Interface

Compare: Usual/conventional therapies

Outcome: Assessments quantify motor function recovery in upper/ lower extremities or/and brain function recovery

Study design: Controlled trials, randomised/randomized controlled trials
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Data analysis
For all outcomes representing continuous data, means
and standard deviations, sample size, and given p-values
were entered into the Comprehensive Meta-Analysis
Version 3.0 software (Biostat, Englewood, NJ, USA).

Primary outcomes
The weighted standardized mean differences (SMD) and
their corresponding 95% confidence intervals (95%CI)
were calculated for individual studies and visualised in
forest plots separately for upper extremity, lower ex-
tremity, and brain function recovery. The analysis in-
cluded the main outcome measure for motor function
recovery or brain function recovery, as specified by the
study investigator. The analysis for brain function recov-
ery included the outcome measures such as indices of
concentration plus changes in activation and connectiv-
ity in the brain function network. Different indices were
used to analyse these responses of brain activity. How-
ever, if the study investigator did not specify the main
outcome, the measure was specified by the first author
(AK). Prior to the research, it was decided to meta-
analyse the results of the individual studies using the
random-effects model with the inversed-variance
method due to expected heterogeneity between studies.
To test the hypothesis of no among-studies heterogen-
eity the Q-test with its corresponding degrees of free-
dom (df) and p-value for an alpha level of 5% was used.
Higgins’ I2 statistic was used as a measure of heterogen-
eity, indicating how much of the total observed variance
can be explained by the true between studies variation
[38]. T2 was used to measure the actual dispersion of
variance [39]. In addition, the 95% prediction interval
(95%CI) was calculated for the overall weighted mean
estimate [39]. This indicator shows, in 95% of cases, that
the true effect size in a new study will be within the
range of the dispersion of the effect size [39]. The overall
mean effect size was expressed in the original metric of
the FMA scale. According to the Cochrane handbook in
re-expressing SMDs using a familiar instrument, the
standard deviation could be obtained as the pooled
standard deviation of baseline scores [40].

Secondary outcomes
To evaluate effect size differences subgroup analyses
were performed to compare the treatment effect for: (1)
patients in the subacute (< 6 months after onset of
stroke) and chronic (> 6 months after onset of stroke)
period after stroke [39] (2) training intensity (high: 5
times per week vs. moderate: 2–3 times per week), (3)
training duration (short: 2–3 weeks vs. long: 4–8 weeks,
and (4) the follow-up period after training (short-term:
12 weeks vs. long-term: 24–36 weeks). Furthermore, a
sensitivity analysis for RoB results was performed.

Studies with overall bias ‘high’ in the RoB 2.0 Assess-
ments were removed from the meta-analysis to deter-
mine the robustness of the pooled effect size [36]. To
evaluate the impact of covariates in relation to the effect
size, a meta-regression was performed using the
random-effects model [39]. Level of impairment at base-
line (FMA upper extremity), training duration in weeks
(long, short), and the interaction between these two
single covariates were chosen as moderators.

Results
Study selection
In July 2018, the initial search was performed in the spe-
cified databases with the defined search strategy for the
identification of studies. The identified 991 studies were
imported into the reference management software End-
note (Clarivate Analytics, Philadelphia, USA). After ref-
erence import, 326 duplicates were removed, and 665
studies remained. No new references were identified by
the search update in March 2019. Figure 1 illustrates the
selection process.
Two reviewers (AK, ZS) independently examined

whether the relevant studies fitted the population, inter-
vention, comparison, outcome and study design (PICOS)
strategy of our research question. After screening titles
and abstracts of all studies, full texts of the remaining 61
studies were consulted. Eleven authors were contacted
for missing data. Disagreement of selected full texts was
resolved with mutual consent. Finally, fourteen studies
could be included. The kappa statistic after full text
screening was 0.82. The reviewers (AK, ZS) could not
agree on three studies and therefore a third reviewer
(CS) was consulted to decide on the studies` eligibility.
The decision was to exclude the three studies. Table 2
provides an overview on all characteristics of the
included studies.

Characteristics of studies
Included studies were published between 2010 and 2017
including small sample sizes ranging between five to 55
patients (mean age between 40.9 and 64.1 years) in the
subacute or chronic phase after a stroke in the experi-
mental groups. The BCI training lasted for a minimum
of 3 days to maximal 6 weeks with two to three training
sessions per week. The Fugl-Meyer Assessment (FMA)
for upper extremity was the most used assessment in ten
studies, though three studies used a modified upper limb
FMA with a maximal score of 54 points (not modified
FMA max. Score = 226).

Brain recovery indices
Four brain recovery indices were described. However
not all indices could be included in the meta-analysis
due to missing data:
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(1) Pichiorri et al. [26] and Ramos-Murguialday et al.
[27] used the laterality index measured by fMRI to
assess cerebral cortical lateralization to quantify
brain recovery. In accordance to Pichiorri [26], the
lateralization index expresses the normalized differ-
ence between the number of active voxels in the
ipsilesional and contralesional. The lateralization
index yields a value of 1 or − 1 when the activity
was purely contralesional or ipsilesional respect-
ively. Only patients with subcortical lesions were
considered for a lateralization index assessment.

(2) Várkuti et al. [28] and Biasiucci et al. [19]
associated motor function recovery in patients in
the chronic phase after stroke with quantitative
indicators of functional neuroplasticity. The authors
measured changes in functional connectivity after
BCI by comparing the resting state fMRI pre- and
post BCI training. According to the authors, the
functional connectivity changes might reflect
re-organisational processes that have occurred
between pre- and post BCI training [28].

(3) Chung et al. [14, 20] examined the effect of BCI
based on functional electrical stimulation (FES) on
brain activation in patients in the chronic phase
after stroke. EEG brainwave patterns were
calculated as the ratio of sensorimotor (SMR) and
Mid-Beta waves to Theta waves ((SMR+ Mid-Beta)/
Theta). The authors demonstrated significant effects
for the EEG brainwave patterns in the frontopolar
regions attention index 1 (Fp1) and 2 (Fp2), and
frontopolar 1 (Fp1) [20].

(4) A fourth index was mentioned by Ang et al. [14]. The
authors collected EEG data during the BCI-Manus
therapy to detect interhemispheric asymmetry using
the brain symmetry index that can range between
zero (lowest level of asymmetry) and one (highest
level of asymmetry) [41]. The averaged brain sym-
metry index from all 12 sessions for the eleven partic-
ipants in the BCIT group was analysed. Ang et al.
and Anastasi et al. proposed that the brain symmetry
index can be used as a prognostic measure for BCI-
based stroke rehabilitation [14, 42]. However, the

Fig. 1 Reference selection process
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study from Ang et al. could not be included in the
meta-analysis due to missing data from the control
group.

Risk of bias within studies
Figures 2 and 3 show the results of the RoB evalu-
ation [36]. Qualitative assessment showed low risk in
measurement of outcomes, missing outcome data, and
selection of the reported results. Moreover, studies
showed some concerns in the randomisation process
and deviation from intended intervention. Only two
studies had a high risk of overall bias.

Risk of bias across studies
RoB results for all studies for the upper extremity
were pooled and presented in funnel plots (Add-
itional file 3). Looking for missing studies right of the
mean, in accordance to the developed method, the
CMA software adjusted two studies. Using the Trim
and Fill method, the imputed point estimate was 0.43
(95%CI: 0.22 to 0.64). This indicates a slightly higher
effect size, but still very similar to the point estimate
of the pooled studies. The adjusted value was equiva-
lent to the observed value and the weighted effect
size was 0.39 (95%CI: 0.17 to 0.62). It can be con-
cluded, if adjusting the effect to remove the possible
bias or asymmetry, the resulting effect would remain
unchanged. However, included studies did not indi-
cate a significant asymmetry suggesting a low publica-
tion bias.

GRADE- evidence profile table
After the evidence was summarised, small sample sizes,
the width and overlap of confidence intervals, heterogen-
eity and generalisability were taken into consideration.
One reviewer (AK) created a GRADE evidence profile
table (Table 3) to present key information on five defined
outcomes (GRADEproGDT, 2015). A second reviewer
(ZS) crosschecked the results. The reviewers (AK, ZS) re-
solved disagreement by discussion. This was the case in
the rating of the outcome ‘brain function recovery’ for ‘not
serious’ or ‘serious’. The final decision was ‘serious’.

Primary outcomes- effect of BCIT on motor function
recovery
Eleven studies [3, 14, 16, 18, 19, 22–24, 26–28] with (329 pa-
tients in total) were included in a meta-analysis evaluating
the effect of BCIT versus conventional therapy alone on
motor function recovery of the upper extremity in patients
after a stroke (Fig. 4). The weighted SMD was 0.39 (95% CI:
0.17 to 0.62) with a 95%PI ranging from 0.13 to 0.66 (Z =
3.45, p = 0.001). Heterogeneity was very low (I2 = 0.00; Q=
3.53, df = 11, p = 0.982). In this set of 11 studies the variance
of the distribution of the effect sizes was T2 = 0.00.
Two studies [21, 25] were included in a meta-analysis

for the effect of BCIT versus conventional therapy alone
on motor function recovery of the lower extremity in pa-
tients after a stroke with 32 patients (Fig. 5). The weighted
SMD was 0.41 (95%CI; − 0.29 to 1.12; Z = 1.15; p = 0.252).
Heterogeneity was very low (I2 = 0.00; Q = 0.02; df = 1,
p = 0.880). The variance of the distribution of the effect
sizes in this sample of the two studies was T2 = 0.00.

Fig. 2 Risk of bias rating for each study. Legend: AOT = Action observation training, BCI=Brain computer interface, FES=Functional electrical
stimulation, MFT =Muscle function test, MI = Motor imagery, UE = Upper extremity
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The meta-analysis, examining the effect of BCIT ver-
sus conventional therapy alone on brain function recov-
ery in patients after a stroke, included five studies with
85 patients (Fig. 6) [19, 20, 26–28]. The overall weighted
SMD was 1.11 (95% CI; 0.64 to 1.59) with a 95%PI ran-
ging from 0.33 to 1.89 (Z = 4.82; p = 0.000). Heterogen-
eity was very low (I2 = 0.00; Q = 3.12, df = 5, p = 0.000).
The variance of the distribution of the effect sizes in this
sample of five studies was T2 = 0.00.

Secondary outcomes
Different subgroups were defined to compare treatment
effects and their influence on the effect size: different
kinds of the BCIT, time since stroke onset, training
intensity and duration, and follow-up period. The sub-
group and sensitivity analyses regarding upper extremity
motor function were performed and were presented in
Additional files 4 and 5.

Subgroup analysis: time since stroke onset and training
intensity
There is a statistically significant effect for both groups
regarding time after stroke: subacute patients had a
value of 0.57 (95%CI: 0.19 to 0.96; Z = 2.90; p = 0.004)
and chronic patients a value of 0.39 (95%CI: 0.09 to
0.68; Z = 2.59; p = 0.010). Within the ‘moderate intensity’
subgroup, the weighted effect size was also in favour of
the BCIT group as compared to the control group. How-
ever, the result was statistically not significant (p =
0.095). Within the ‘high intensity’ subgroup, the

weighted effect size was 0.58 (95%CI: 0.24 to 0.92; Z =
3.33; p = 0.001) and statistically significant.
The weighted effect size for patients in the subacute or

chronic phase after stroke can be interpreted as a small
to medium effect.

Subgroup analysis: training duration and follow up period
Using the random-effects model, the weighted overall ef-
fect sizes were statistically significant for: (1) short dur-
ation training (two to 3 weeks) with a value of 0.54
(95%CI: 0.19 to 0.89; Z = 3.06; p = 0.002), (2) long dur-
ation training (four to 8 weeks) with a value of 0.31
(95%CI: 0.06 to 0.56; Z = 2.44; p = 0.016), and (3) long-
term follow-up (24 to 36 weeks) with a value of 0.56.
(95%CI: 0.01 to 1.11; Z = 1.99; p = 0.047).
The weighted effect size for short and long duration

training, and long-term follow-up can be interpreted as
a small to medium effect.

Sensitivity analysis
For the sensitivity analysis two studies [14, 27] were re-
moved after being rated high-risk in the domain ‘overall
bias’ (SMD = 0.42; 95%CI: 0.18 to 0.66; Z = 3.46; p =
0.001). The heterogeneity was very low (I2 = 0.00) and
statistically not significant (Q = 2.97, df = 9, p = 0.965).

Meta-regression
A meta-regression was performed to assess the effect
three covariates on the effect size: training duration, level
of impairment, and the interaction between training

Fig. 3 Domains rated as percentage of all studies
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duration and FMA baseline value. However, none of the
three covariates showed a significant influence (see
Additional file 6).

Discussion
In this systematic review, 14 studies with patients after a
stroke were included to investigate the effect of BCI on
recovery after stroke. All studies focussed on the effect
of BCIT added to conventional therapy on motor and
brain function recovery in patients after a stroke ische-
mic or hemorrhagic stroke. Not all studies reported
information regarding lesion location. However, if
reported, the stroke was located in cortical and subcor-
tical areas. Furthermore, studies involved more patients
in the chronic phase after stroke than in the subacute
phase after stroke. Most studies presented a low RoB in
the outcome measurements, in the deviation from the
intended intervention, and in the randomisation process.
Studies focussing on motor function recovery for upper
extremity were rated as ‘high quality’ and focussing on
brain function recovery were rated as ‘moderate cer-
tainty’. Both study groups presented low sample sizes,
wide CIs, and very short intervention periods. None of
the included studies reported adverse events.
Meta-analyses indicated a statistically significant benefit

of BCIT on motor function recovery of the upper extrem-
ity and brain function recovery in patients after a stroke.
For the upper extremity, a statistically significant benefit
could be interpreted as 5.4 to 8.1 points on the FMA of
the upper extremity [3, 22, 23]. Furthermore, the analyses
showed homogeneity among studies with the most partici-
pants and methodological sound experimental protocols.

Only two trials focussed on motor function recovery of
the lower extremity. However, both studies presented low
sample sizes, large confidence intervals, and poor meth-
odological quality making it impossible to draw clear-cut
conclusions [21, 25].
Regarding the upper extremity, in a sensitivity analysis,

two studies rated as ‘high risk’ in the RoB were excluded.
The exclusion had a small effect on the overall weighted
estimate indicating its robustness against RoB in the
individual studies.
The subgroup analyses demonstrated significant effects

for subacute and chronic patients. The weighted effect
size for subacute patients had a large effect size of 0.57
compared to the small to medium effect size of 0.39 for
chronic patients. Furthermore, for the high intensity
training a large effect size of 0.58 was found whereas
both the weighted effect size for short and long duration
training was statistically significant. However, due to the
trend to reach a recovery plateau in patients in the
chronic phase after stroke, a high intensity BCIT (two to
three times a week) with a training duration between
three to 6 weeks might be an efficient approach in
clinical practice.
To evaluate the impact of the covariates training dur-

ation, level of impairment, and the interaction between
training duration and FMA baseline value on the effect
size, a meta-regression was performed using the
random-effects model [36]. However, no significant ef-
fects on the overall pooled estimate were detected. It re-
mains to be investigated whether the training duration
combined with the training intensity could have a
significant influence on the effect size.

Fig. 4 Effect of brain computer interface training added to conventional therapy versus control intervention on upper extremity motor function.
Legend: BCI = Brain computer interface, CI=Confidence interval, SAT = Standard arm therapy, Std = Standard deviation
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None of the 14 included studies used standardised as-
sessments to evaluate MI ability. Malouin et al., de-
scribed a mental slowing after stroke leading to more
difficulties to generate a mental representation of move-
ment [43, 44]. To determine participant benefits of BCIT
based on MI, it is important to evaluate his/her MI abil-
ity [45]. Different valid and reliable assessments to evalu-
ate patients MI ability are available such as the
Kinaesthetic and Visual Imagery Questionnaire [46].
Furthermore, there were no standards for introduction

or training of MI reported and there might be differences

in the MI methods applied among facilities. A detailed de-
scription would be helpful to transfer the successfully im-
plemented MI strategies into clinical routine. We further
speculate that the potential of BCIT might be even higher
if patients would receive a systematic MI introduction and
training [47, 48].
A correlation between brain function recovery and

motor function recovery was mentioned by Ramos-
Murguialday et al. [27]. Authors mentioned a correlation
between the laterality index changes and FMA subscale
hand score (r = 0.54, p = 0.05). Pichiorri et al. examined,

Fig. 5 Effect of brain computer interface training added to conventional therapy versus control intervention on lower extremity function. Legend:
BCI = Brain computer interface, CI=Confidence interval, Std = Standard deviation

Fig. 6 Effect of brain computer interface training added to conventional therapy versus control intervention on the brain recovery index. Legend:
BCI = Brain computer interface, CI=Confidence interval, Std = Standard deviation
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whether the possible changes in the intra-hemispheric
networks correlated with the FMA score [26]. Their ana-
lysis detected a positive correlation between the increase
in the laterality index value and the scoring in the FMA
scale in the BCI group in the beta 1 bands (r = 0.57, p =
0.034), beta 2 (r = 0.60, p = 0.024), and gamma bands
(r = 0.61, p = 0.023). The same laterality index was not
significant for the unaffected hemisphere.
Moreover, Ang et al. [14] reported a correlation (r =− 0.62,

p = 0.044) between the brain symmetry index, indi-
cating a trend towards less asymmetry values and an
improved FMA scoring.
Correlations between brain function recovery and cog-

nitive assessments were not reported in the literature.
However, the evaluation of cognitive capacities in pa-
tients with severe motor disabilities might have relevant
implications for the BCIT systems [49]. Current BCIT
systems are not well suited for use outside the clinic or
research laboratory due to their large size, high costs,
and lengthy set up time. Furthermore, the BCIT systems
require highly trained personnel. However, future inves-
tigations should involve controlled experiments using
low-cost BCIT systems. A section ‘state of the art’ of
studies about costs and additional information about
studies is provided in the supplementary material.

Limitations and strengths
The systematic review process might have been con-
founded by some factors. The search was only per-
formed in English language databases that published
abstracts in English. However, the main literature
sources are English-speaking peer-reviewed journals and
conferences. No abstract or full text were excluded be-
cause it was published in a different language than
English. The calculated effect sizes ignored the fact that
conventional therapy compared with BCIT varied among
the 14 included studies. However, the composition of
the search strategy and the search itself were conducted
by a professional research librarian from the University
of Zurich in accordance with the review protocol provid-
ing a comprehensive search and detailed knowledge of
different databases with a medical or technical focus.

Conclusion
Based on the results of the present review, we recommend
a BCIT combined with conventional therapy for a duration
of 4 weeks or longer, with a preference for high intensity
training of five times per week. BCIT combined with a wide
range of different interventions reflects complexity and
variety in of its applicability. We further recommend imple-
menting assessments of neuropsychological parameters
such as attention, concentration or cognition as well as MI
ability measures, such as the KVIQ, to evaluate patients’
capabilities important for the mental training. An important

topic for future work will be the examination of motor
function recovery of the lower extremities in patients after
a stroke. Furthermore, there is abundant scope for further
progress in determining different aspects of the effect of
BCIT on brain recovery in addition to functional connectiv-
ity. To develop a full picture of clinical factors that influ-
ence the effect size in motor recovery of upper extremities
of patients after stroke, additional studies are needed to
analyse parameters, such as patients’ age, lesion location,
performance of MI ability, affected hemisphere, or type of
lesion. Moreover, future studies should include long-term
follow-ups 24–36 weeks after intervention begin in patients
after a stroke. The interaction between baseline Fugl-Meyer
Assessment score and training duration showed a no-
significant effect. However, the interaction between the co-
variates training duration and training intensity should be
further investigated.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12883-020-01960-5.

Additional file 1. Example search strategy for each database.

Additional file 2. Overview on extracted study data.

Additional file 3. Figure AM1_Funnel plots.

Additional file 4. Figure AM2_Subgroup analyses: Time since stroke,
training intensity and sensitivity analysis.

Additional file 5. Table AM1_Subgroup analysis: Time duration and FU.

Additional file 6. Figure AM3_Meta Regression
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