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A deep learning model for diagnosing
dystrophinopathies on thigh muscle MRI
images
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Abstract

Background: Dystrophinopathies are the most common type of inherited muscular diseases. Muscle biopsy and
genetic tests are effective to diagnose the disease but cost much more than primary hospitals can reach. The more
available muscle MRI is promising but its diagnostic results highly depends on doctors’ experiences. This study intends
to explore a way of deploying a deep learning model for muscle MRI images to diagnose dystrophinopathies.

Methods: This study collected 2536 T1WI images from 432 cases who had been diagnosed by genetic analysis and/or
muscle biopsy, including 148 cases with dystrophinopathies and 284 cases with other diseases. The data was randomly
divided into three sets: the data from 233 cases were used to train the CNN model, the data from 97 cases for the
validation experiments, and the data from 102 cases for the test experiments. We also validated our models expertise
at diagnosing by comparing the model’s results on the 102 cases with those of three skilled radiologists.

Results: The proposed model achieved 91% (95% CI: 0.88, 0.93) accuracy on the test set, higher than the best accuracy
of 84% in radiologists. It also performed better than the skilled radiologists in sensitivity : sensitivities of the models and
the doctors were 0.89 (95% CI: 0.85 0.93) versus 0.79 (95% CI:0.73, 0.84; p = 0.190).

Conclusions: The deep model achieved excellent accuracy and sensitivity in identifying cases with dystrophinopathies.
The comparable performance of the model and skilled radiologists demonstrates the potential application of the
model in diagnosing dystrophinopathies through MRI images.
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Background
Dystrophinopathies are the most common muscular dys-
trophies caused by mutation of the dystrophin gene. Se-
vere Duchenne muscular dystrophy (DMD) and milder
Becker muscular dystrophy(BMD) are the two typical dys-
trophinopathies. These diseases are characterized by pro-
gressive muscle weakness and muscular atrophy, mostly
leading to cardiopulmonary failure and even death. Gluco-
corticoid therapy has been proved to be able to stabilize

or improve muscle strength. When ambulation becomes
more marginal, the benefit might be more limited [1],
which implies timely and accurate diagnosis is crucial.
Two commonly used diagnostic approaches for dystro-

phinopathies are genetic testing and muscle biopsy. Al-
though both techniques have exhibited specific expertise,
they still need to be tailored to dystrophinopathies. Multi-
plex ligation-dependent probe amplification (MLPA), a
fast and convenient gene testing method, has gained glo-
bal popularity, but can only detect 70% cases of dystrophi-
nopathies [2, 3] due to different mutation types in the
dystrophin gene. The next-generation sequencing can
identify about 95% cases with dystrophinopathies [3], but
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its complex operation and prohibitive price hinder its
spread in less-developed countries and regions. Im-
munohistochemical staining, a muscle biopsy method,
can achieve 100% sensitivity for identifying DMD
while only 73% for BMD [4], and its invasive and
complex technique may prevent ordinary hospitals
from implementing it.
Magnetic resonance imaging (MRI) has attracted

physicians as a promising alternative to diagnose dys-
trophinopathies, especially those who work with lim-
ited health recourses, thanks to its noninvasive and
convenient operation. Several studies have described
MRI findings in muscles of dystrophinopathies that
indicated a distinct pattern of fatty infiltration [5–9].
This pattern can be used to assess disease progression
and guide following diagnosis [10]. Dam et al. evalu-
ated muscle MRI/CT to assess BMDs, and obtained a
sensitivity of 91% [11]. Zheng et al. proposed the tre-
foil with single fruit sign as an imaging marker for
diagnosing dystrophinopathies and achieved a specifi-
city of 99.2% [12].
These fruitful studies have propelled researchers to

further improve the accuracy and reliability of MRI
imaging, but a fundamental difficulty stands in the
way. Current assessment of dystrophinopathies
through MRI images is to identify fat infiltration in
muscles by doctors. It highly depends on personal ex-
periences and can easily lead to misdiagnosis, given
that similar patterns that some other muscular dystro-
phies exhibit might perplex junior physicians. There-
fore, an more objective analysis method is required.
Deep learning seems to be a perfect choice. It ex-
tracts informative features from medical data to clas-
sifies certain patterns, thus to present effective and
objective diagnosis. Deep learning methods have been
serving in clinical practice as a valuable assistance
[13, 14]. For example, convolutional neural networks
(CNNs) have gained appealing results on several med-
ical MRI datasets [15–17]. However, most published
works on muscle MRI images focused on segmenta-
tion of different muscle regions [18–20], and barely
noticed patterns of diseases. Given CNNs’ classifying
power, their ability of identifying dystrophinopathies
in muscle MRI images need to be explored.
This study incorporates a CNN network to MRI im-

aging assessment, and intends to test and verify the reli-
ability of diagnosis on dystrophinopathies through
muscle MRI. A comparison experiment is conducted to
demonstrate the diagnostic power of the proposed
CNN-based approach versus radiologists.

Methods
The workflow of the proposed approach is depicted in
Fig. 1.

Study population
We collected MRI data from 432 cases including 148
cases with dystrophinopathies and 284 cases with other
muscle diseases (other types of muscular dystrophy,
myositis and neurogenic diseases) in the control group.
The 432 patients were all ambulatory during the MR
examinations.
The 148 cases with dystrophinopathies were all

male, with an average age of 14.8 ± 6.6 years (8–
57 years), and an average course of 9.4 ± 6.7 years
(2.0-51.5 years). The average course of 117 DMD pa-
tients was 7.3 ± 2.5 years (2.0-12.8 years), and the
average course of 31 BMD patients was 17.1 ±
10.6 years (3.9–51.5 years). The 284 cases in the con-
trol group consisted of e 164 males and 120 females
(male to female ratio 1.4:1), with an average age of
36.8 ± 16.9 years (9–81 years) and the average course
was 5.8 ± 5.9 years (1month-22 years).
We randomly divided the cases into three sets: train-

ing, validation, test. The resulted training set included
233 cases, the validating 97 and the testing 102. Each
case corresponded to multi-T1WIs (T1-weighted im-
ages) of cross-sectional MRI scanning proximally at the
level of the mid-thigh. Muscle MRI examinations at 1.5
or 3.0 T (GE Healthcare, Waukesha, WI, USA) were per-
formed with the following sequences: axial T1-weighted
spin echo series with 450/12 (repetition time, ms/echo
time, ms). All cases had been diagnosed by electromyog-
raphy, the gene sequencing, test for myositis associated
or specific autoantibodies, or muscle biopsy.

ROI localization
We acquired the region of interest (ROI) in each original
MRI image using the Otsu threshold and the adaptive
window method. First, the largest connected parts in the
image indicating the hip area was identified, and then
two regions of the left and the right legs connected by
the hip could be separated by the Otsu threshold selec-
tion [21]. Second, an adaptive window was determined
to search a minimal rectangle that contains the ROI in
each image while eliminating invalid background area as
much as possible.

CNN Model
We compared the performance of classical CNN net-
works like Inception-V3 [22], Resnet50 [23], VGG-19
[24] and DenseNet [25] in the dataset. As shown in
Table 1, Resnet50 achieved excellent performance in
several metrics, so we adopted ResNet50 as our base
model. The ResNet50 network introduces a residual
module to solve the problems such as gradient degrad-
ation and training difficulty caused by the increasing
depth of CNNs.
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Given limited labeled clinical images that we had, we
had to circumvent traditional training procedures that
usually require ten thousands to millions of labeled im-
ages while preventing the training from over-fitting.
Therefore, we retrofitted the ResNet50 architecture and
pre-trained it on the ImageNet dataset [26]. As shown in
Fig. 2, the convolutional layers trained on ImageNet are
frozen and used as fixed feature extractors; the global
average pooling layer and the fully connected layers are
recreated and retrained to form a new model that can
classify our specific medical categories. Also, binary-
entropy was chosen as the loss function, and stochastic
gradient descent [27] for optimization. The training was

performed with a learning rate of 1e-4 and a batch size
of 32 until it converged. The networks were established
on Keras deep learning library with Tensorflow backend.

Evaluation metrics
To validate the proposed model, we compared its results
with those from three radiologists specialized at muscle
diseases: a resident with five years’ experience, an at-
tending doctor with six years’ experience, and a resident
with three years of experience. They were all provided
only with T1WI images without access to any informa-
tion about the cases.

Fig. 1 Workflow Diagram. a Flowchart of obtaining the images of three data sets. b Flowchart of constructing the CNN model using the
three datasets

Table 1 Image classification comparison: classification results are reflected by accuracy, specificity and sensitivity

Model Accuracy Specificity Sensitivity AUC

VGG-19 [24] 0.87 (95%CI: 0.84, 0.89) 0.98 (95%CI: 0.96, 0.99) 0.66 (95%CI: 0.59, 0.72) 0.91

ResNet50 [23] 0.91 (95%CI: 0.88, 0.93) 0.92 (95%CI: 0.89, 0.94) 0.89 (95%CI: 0.85, 0.93) 0.98

DenseNet201 [25] 0.90 (95%CI: 0.87, 0.92) 0.98 (95%CI: 0.96, 0.99) 0.74 (95%CI: 0.68, 0.79) 0.96

DenseNet121 [25] 0.88 (95%CI: 0.85, 0.91) 0.94 (95%CI: 0.91, 0.96) 0.78 (95%CI: 0.72, 0.83) 0.94

Inception-V3 [22] 0.90 (95%CI: 0.87, 0.92) 0.94 (95%CI: 0.91, 0.96) 0.83 (95%CI: 0.77, 0.87) 0.96
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Fleiss Kappa [28] was adopted to measure the inter-
examiner agreement. In this study, the indication of dif-
ferent ranges of Kappa values were determined as: <0,
no agreement; 0–0.20, slight agreement; 0.21–0.40, fair
agreement; 0.41–0.60; moderate agreement; 0.61–0.80
substantial agreement; and 0.81–1.00, nearly perfect
agreement.
We also used the notions of sensitivity, specificity and

accuracy to evaluate the diagnostic accuracy of the pro-
posed model. Sensitivity means the percent of true posi-
tives that are correctly identified. Specificity refers to the
percent of true negatives that are correctly identified.
Accuracy of a classifier represents the overall percentage
of correct classifications.
F1 score was also used to comprehensively compare

the results between the model and the doctors. F1 score
is the harmonic mean of Precision and Recall, including
positive likelihood ratio [29] and negative likelihood ra-
tio. The positive likelihood ratio describes how well a
test performs in identifying a disease state. It is obtained
by the probability of a positive test result in the presence
of the disease divided by the probability of a positive test
result in the absence of the disease. The higher the posi-
tive likelihood ratio, the better the model performs in
identifying disease. The negative likelihood ratio indi-
cates how well a model excludes a disease state. The
lower it is, the better the model performs on excluding a
disease.

Decision‐making basis
Machine learning systems are often regarded as black
boxes given their mysterious decision-making processes
that people cannot inspect. To present a more compre-
hensible process, we applied class activation mapping
(CAM) to visualize the decision basis of the network
[30]. The features of the last convolutional layer in the
CNNs were linearly weighted to highlight the regions
that could determine the model’s different classification
results.

Results
Patient and image characteristics
We finally obtained 2536 images from 432 cases that
held sufficient quality and met diagnostic standards, and
some images were deleted where the distances between
the two legs were too short for separation. Among them,
1406 from 233 cases were used for training, 482 from 97
cases for validation, and 648 from 102 cases for test the
performance of the model. The detailed information of
these images is listed in Table 2.

Fig. 2 Schematic of a convolutional neural networks with transfer learning. First, the ResNet50 model is trained on the ImageNet dataset of 1000
categories; Second, the convolutional layers are frozen and transferred into a new network; Third, the fully connected layers are retrained through
the input of dystrophinopathies T1W1 images; Finally, the model outputs binary classification results

Table 2 The detailed information about patients and image of
various diseases in different data sets

Cases /Image size Training Validation Test Total

Muscular disease

DMD 71/480 26/120 20/130 117/730

BMD 9/76 5/40 17/98 31/214

LGMD2A 20/86 8/32 2/8 30/126

LGMD2B 12/38 8/32 2/8 22/78

LGMD2C 2/8 0 0 2/8

LGMD2D 15/56 6/24 3/12 24/92

LGMD2E 8/32 3/12 4/16 15/60

LGMD2I 10/64 5/20 2/12 17/96

Bethlem myopathy 4/16 1/4 1/4 6/24

FSHMD 8/32 2/8 2/8 12/48

Congenital myopathies 8/32 2/8 2/8 12/48

GNE myopathy 5/40 3/18 0 8/58

MADD 15/58 6/24 5/20 26/102

Myositis 18/144 15/92 24/196 57/432

Neurogenic 28/244 7/48 18/128 53/420

Total 233/1406 97/482 102/648 432/2536

Abbreviations: DMD Duchene muscular dystrophy, BMD Becker muscular
dystrophy, LGMD limb-girdle muscular dystrophy, FSHMD facioscapulohumeral
muscular dystrophy, MADD multiple acyl coenzyme A
dehydrogenation deficiency
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Comparison of the model with human experts
The comparison results between the model and the phy-
sicians are depicted in Fig. 3.
The accuracies of the three physicians were 0.80 (95%

CI 0.77–0.83), 0.84 (95% CI 0.81–0.87), and 0.84 (95%
CI 0.81–0.87), and the inter-examiner agreement of
them was substantial (Kappa 0.628). The accuracy of the
model was 0.91 (95% CI 0.88–0.93), which was higher
than those of the doctors. Other metrics of the model,
including F1 score, sensitivity, specificity, and likelihood
ratio, were also better than those of the radiologists.
Figure 4 displays the sensitivities and specificities of the

experts on the ROC curve of the trained model. The
area under the ROC curve was 0.98, and the perform-
ance was comparable between the model and the
doctors.

Visualization of the model
The visualization of the model’s decision basis is shown
in Fig. 5. The model paid different attentions to different
regions of the input images. Regions in red and yellow
were emphasized and could influence the results. In the
cases with dystrophinopathies, the model tended to
focus on multiple localized regions, whereas in cases

Fig. 3 Various metrics of experts and networks for dystrophinopathies diagnosis. a, Accuracy. b, F1 score. c, Sensitivity. d, Specificity. e, Positive LR.
f, Negative LR. The legend of each subplot reports the detailed numerical results
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diagnosed with non- dystrophinopathies, the model’s re-
gion of interest was concentrated near the bones.

Classification on DMD and BMD
Since dystrophinopathies have two clinical subtypes,
DMD and BMD, and the corresponding clinical

treatments of them are different, we further investigated
the sensitivity of the model to DMD and BMD.
The test set included a total of 130 images from pa-

tients with DMD, 98 images from patients with BMD,
and 420 images from patients with other diseases. As
shown in Table 3, the 123 images from the DMD group
were classified as dystrophinopathies, and the 81 images
from the BMD group were classified as dystrophinopa-
thies. The sensitivity of this model to DMD (94%) was
higher than that to BMD (82%).

Discussion
The presented study explored the possibility of deep-
learning methods of detecting dystrophinopathies on
MRI images. The comparison experiments demonstrated
that the proposed model can identify dystrophinopathies
on MRI images with an AUC of 0.98, accuracy of 91%,
and achieve similar specificity and higher sensitivity
compared with skilled radiologists. Our research ex-
pands MRI’s potential in detecting dystrophinopathies,
thus can further spread MRI as a low-cost diagnosis
method to less-developed regions.
More than the excellent performances that other deep

learning methods have achieved [31, 32], our model ex-
ploits extra values of machine-learning methods for clin-
ical practice. First, our model provides an effective way
of training a deep-learning model with limited MRI

Fig. 4 Receiver operating characteristic curve obtained using the
convolution network. The receiver operator characteristic (ROC) area
under the curve (AUC) is 0.98, and the orange triangle refers to the
average performance of the experts. Circles and the triangle are all
below the curve

Fig. 5 Saliency maps of the correctly diagnosed/the misdiagnosed dystrophinopathy/non- dystrophinopathy samples. Colors ranging from red to
blue indicates the importance of image regions from high to low. a original images of samples correctly diagnosed as dystrophinopathy by the
CNNs; c original images of correctly diagnosed as non-dystrophinopathy samples; e original images of incorrectly diagnosed as dystrophinopathy
samples; g original images of incorrectly diagnosed as non-dystrophinopathy samples (b, d, f, h) are the corresponding saliency maps
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images. Collecting enough data of dystrophinopathies is
crucial to doctors as well as to traditional deep-learning
models, because doctors need to summarize rules and
characteristics through years of practice on large amount
of data, just like a normal deep-learning model dose.
Our approach integrates transfer learning strategy, a
proved highly effective technique for limited data [33,
34], to train a model in a short time with limited sam-
ples. Plus, the performance of our model would be en-
hanced with continuous accumulation of clinical data.
Second, our model provides an objective way of diagnos-
ing dystrophinopathies. Diagnosing dystrophinopathies
through MRI images is to assess the degree of muscle fat
infiltration. Given no quantitative standard for the de-
grees, different doctors would present different diagno-
ses. Luckily, the deep-learning model can tackle this
problem, because features it extracts from MRI images
are independent from radiologists’ judgments, leading to
a more objective and less bias-prone results. Third, our
model also provides extra ability of interpreting
decision-making process. This visualization suggested
that the network is not focused on specific regions like
experts, and it has its own way to distinguish between
dystrophinopathies and non-dystrophinopathies, a pat-
tern that does not exactly match the experience of clin-
ical experts.
To the best of our knowledge, our study incorporates

the largest number of MRI images of cases with dystro-
phinopathies for a deep learning model. All cases had
been diagnosed by muscle biopsy and genetic examin-
ation. The categorizing followed the popular principle:
the validation and the test sets hold similar sizes that are
smaller than that of the training set [35–37]. The study
also adhered to the premise that MRI images from one
case cannot exist in different sets. To exploit the model’s
feasibility, we included more diseases in the control
group, like the limb-girdle muscular dystrophy with
similar MRI characteristics, the inflammatory myopathy,
and other muscular diseases. In addition, our model has
a higher sensitivity in diagnosing DMD compared with
BMD, which may be related to the fact that BMD pa-
tients correspond to a mild lesion degree of MRI
imaging.

Several studies have implied an increasing awareness
of the value of MRI in muscular dystrophy. Carlier et al.
indicated that MRI can be utilized in the diagnostic
workup, and believed that the potential of MRI to diag-
nose muscular dystrophy should be maximized [38].
Kim et al. reviewed the development of MRI technology,
and analyzed its effect on MRI’s application in muscular
dystrophies [39]. They concluded that further investiga-
tion of techniques might provide new opportunities for
convincing diagnosis. Cai et al. proposed a deep-learning
method and achieved an accuracy of 91.7% for classify-
ing muscle diseases in 42 cases. But the data used in
their work were acquired through chemical shift-based
water-fat separation MR imaging [40]. Although the se-
quence can present clearer results of fat infiltration in
muscles, it requires higher technique of imaging, which
obviously restricts its clinical application. In contrast,
the T1WIs are more easily available in clinical practice
while well revealing the fat infiltration in muscles. They
have been widely used in clinical trials [41–43]. Our
study is the first to demonstrate that T1WI images can
be used by the deep learning model, and the improved
sensitivity echoes the aim of preliminary screening dys-
trophinopathies using MRI.
Some limitations in our study need to be considered.

First, our model only outputs binary results of classifica-
tion, and diversified diagnosis, like identifying muscle
dystrophies or inflammatory myopathies by one ap-
proach, needs to be further addressed. Second, reason-
able inclusion of the fat-saturated T2-weighted sequence
information might improve the diagnosis results and
sensitivity of the model. Third,our study only deals MRI
images of thigh areas, without 3D images of the whole
leg or other parts that could contain lesions, like the
shank or the upper limb. Future work should include
more parts of possible lesions to improve the model’s
generalizability. Fourth the research data were collected
from a single source. Since MRI imaging parameters
from different sources usually varies, and data from
more sources should be incorporated. Last, our work did
not include a control sample of healthy individuals. In
fact, healthy patients rarely initiate muscle MRI, so we
could not collect adequate healthy control data for
study. Besides, it is simpler to distinguish healthy people
from patients in the clinic. But we will include a suffi-
cient number of heathy human MRI images for com-
parative study in our follow-up work.

Conclusions
In conclusion, our results suggest that the deep learning
model presents comparable performance compared with
experience radiologists. Our study indicates a promising
future of deep-learning methods of diagnosing muscle
diseases, especially dystrophinopathies, through MRI

Table 3 Classification results about DMD and BMD

Predicted Dystrophinopathy Non-
dystrophinopathyActual

DMD 123 7

Non-dystrophinopathy 35 385

BMD 81 17

Non-dystrophinopathy 35 385
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images,. With the development of deep learning
methods, the potential of MRI in detecting dystrophino-
pathies can be expanded, thus we can further spread
MRI to less-developed regions as a low-cost diagnosis
method.
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