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Abstract

Background: Gait impairments are among the most common and impactful symptoms of Parkinson’s disease (PD).
Recent technological advances aim to quantify these impairments using low-cost wearable systems for use in either
supervised clinical consultations or long-term unsupervised monitoring of gait in ecological environments.
However, very few of these wearable systems have been validated comparatively to a criterion of established
validity.

Objective: We developed two movement analysis solutions (3D full-body kinematics based on inertial sensors, and
a smartphone application) in which validity was assessed versus the optoelectronic criterion in a population of PD
patients.

Methods: Nineteen subjects with PD (7 female) participated in the study (age: 62 ± 12.27 years; disease duration:
6.39 ± 3.70 years; HY: 2 ± 0.23). Each participant underwent a gait analysis whilst barefoot, at a self-selected speed,
for a distance of 3 times 10 m in a straight line, assessed simultaneously with all three systems.

Results: Our results show excellent agreement between either solution and the optoelectronic criterion. Both
systems differentiate between PD patients and healthy controls, and between PD patients in ON or OFF medication
states (normal difference distributions pooled from published research in PD patients in ON and OFF states that
included an age-matched healthy control group). Fair to high waveform similarity and mean absolute errors below
the mean relative orientation accuracy of the equipment were found when comparing the angular kinematics
between the full-body inertial sensor-based system and the optoelectronic criterion.

Conclusions: We conclude that the presented solutions produce accurate results and can capture clinically relevant
parameters using commodity wearable sensors or a simple smartphone. This validation will hopefully enable the
adoption of these systems for supervised and unsupervised gait analysis in clinical practice and clinical trials.
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Background
Parkinson’s disease (PD) presents a multitude of motor
and non-motor symptoms heterogeneous in expression
and progression over time [1, 2]. Alterations in full-body
kinematics are seen since early stages of the disease and
are characterized by reduced velocity, step length, arm
swing and smoothness, increased inter-limb asymmetry,
impairments in complex locomotor tasks (e.g., turning)
and reduced range of motion at several joints (e.g.,
shoulder), leading in later stages to an increase in
double-support time and cadence, shuffling steps, freez-
ing of gait and festination [3]. Changes in lower and
upper body kinematics have shown to be potential
markers of disease progression in the early stage (num-
ber of steps, total duration, harmonic ratios and arm
swing asymmetry) and middle stage (stride time variabil-
ity and stride regularity) disease progression [4, 5].
Motor symptoms of PD are commonly rated using the

Movement Disorder Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS), which has guided thera-
peutic decisions for several decades [1]. This approach is
subjective and time-consuming, limited in assessment
repetition and lacking in quantitative outcomes [6]. Full-
body kinematic analysis systems are needed to obtain a
full and objective assessment of movement as a basis for
individually tailored clinical decision making and
prognostication.
For decades, optoelectronic tracking systems have

been established as a criterion in quantitative movement
analysis [7]. However, such equipment is expensive, re-
stricted to a controlled and calibrated environment, re-
quiring a complex setup phase [7–9]. Wearable inertial
sensors (e.g., inertial measurement units – IMU) have
been introduced into clinical practice due to their rela-
tively low cost, lightweight and ease of use [7–9] and
have been proven to be useful and feasible for kinematic
analysis of PD gait [10, 11]. However, very few studies
applying inertial sensor systems quantitatively describe
the changes in full-body kinematics in PD gait [10–13].
The previously described motor symptom assessment

methods all require an in-person consultation with the
patient. In between such assessments, motor symptoms
and their fluctuations are reported using patient diaries
[14, 15]. The risk of poor adherence, limited time reso-
lution and subjective nature of such information raises
concerns regarding their accuracy and reliability [14, 15].
It is necessary to expand beyond conventional clinical
assessments and aim for movement analysis in unsuper-
vised, ecologically valid and patient-relevant environ-
ments to achieve a more accurate kinematic
characterization.
Quantitative unsupervised movement analysis could

capture symptom fluctuations and rare events in PD
while minimizing the effects of supervision [11, 14]. This

would require an affordable, user-friendly system with
minimal impact on daily living [16, 17]. Smartphones are
owned by 81% of adults in the United States [18], con-
tain one or several embedded inertial sensors and have
been validated as a platform for ecological movement
analysis [16, 19–22]. Benefits in terms of healthcare ac-
cessibility, patient engagement and reduction of clinician
workloads are also envisioned or already proven to
emerge from the use of mobile health technologies [23].
However, many studies addressing movement analysis
using smartphone sensors have requirements that do
not reflect typical usage, reducing ecological validity, and
validation of applications for gait analysis of PD patients
is limited [19].
Attempting to address current issues of quantitative

motion analysis in terms of cost, time consumption and
influence of supervision, two methods of objective and
quantitative gait analysis were developed and are pre-
sented in this study: a 3D full-body kinematics analysis
system based on inertial sensors for supervised objective
evaluations, and a smartphone application for
characterization of gait-related motor symptoms of PD
in daily living scenarios beyond clinical assessments. To
assess the validity of these methods for clinical practice
and clinical trials, this study aims to simultaneously as-
sess the estimation of the agreement between each of
these two methods of objective and quantitative gait
analysis and the optoelectronic criterion in patients with
PD.

Methods
Recruitment and eligibility
The study was approved by Campus Neurológico Sénior
(CNS) Ethics Committee (Ref. 04/2019) and all partici-
pants gave their written informed consent in accordance
with the Declaration of Helsinki. Study participants were
recruited between July and October 2019 from the in-
and outpatients of the CNS, a tertiary specialized move-
ment disorders center. After providing written informed
consent, subjects with a PD diagnosis were evaluated for
eligibility for study enrolment. Eligibility criteria in-
cluded the ability to understand the potential risks and
benefits of the study, willingness and ability to provide
written informed consent to participate in the study, PD
diagnosis (according to MDS criteria [24]), ability to
walk unassisted, perform the Timed Up and Go test in a
normal pace and without assistance in less than 11,5 s
(i.e. no fall risk) [25], in ON phase, and Hoehn & Yahr
scale < III. Exclusion criteria were defined as cardiovas-
cular, pulmonary or musculoskeletal conditions that
could affect patients’ ability to participate in the study,
inability to correctly respond to the assessment protocol
according to the clinician’s judgment or lack of support
from a caregiver for this purpose and permanent use of
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gait assistance. A certified rater performed the MDS-
UPDRS on all subjects. A summary of the subjects’ clin-
ical outcomes is shown in Table 1.
A unique identification number was attributed to each

participant enrolled in the study to maintain
confidentiality.

Experimental setup
Participants underwent a gait analysis barefoot, at a self-
selected speed, for a distance of 10 m along the labora-
tory’s diagonal, going back and forth three times, never
exceeding 1min, and allowing the participant to rest
whenever necessary. All participants received a careful
explanation and were allowed a familiarization period in
which they were given time to get accustomed to the
equipment and space, and performed the task once
whilst yet unrecorded. The participants’ motion during
the walking trials was assessed simultaneously with an
optoelectronic (used as the criterion), an inertial and a
smartphone-based capture system.
Time synchronization between motion capture sys-

tems was achieved by sending a trigger signal from the
optoelectronic system to the inertial system to start data
capture.
For the optoelectronic system, 48 retroreflective

markers were placed on the participants’ skin over spe-
cific anatomical landmarks (1st and 5th distal metatarsal
head, Hallux’s distal phalanx, heel, medial and lateral
malleoli, medial and lateral femoral condyles, anterior
and posterior superior iliac spines, xiphoid process, jugu-
lar notch, spinous process of 7th cervical and thoracic
vertebrae, acromion, medial and lateral humeral epicon-
dyles, head of the ulna, styloid process of the radius, and
distal phalanx of the middle finger). Additionally, four
rigid clusters, each with four markers, were attached to
the lateral sides of the thighs and shanks. The markers
were placed by an experienced physiotherapist, always
prior to placement of any IMU and were held in position
with double-sided adhesive tape. The 3D coordinates of
each marker were collected at 120 Hz by a system of 10

infrared cameras (Oqus 300+, Qualisys AB, Gothenburg,
Sweden).
For the inertial system, fifteen IMU (Xsens, Enschede,

Netherlands) with a sample rate set to 120 Hz, were
placed and secured using elasticated velcro straps, in dif-
ferent body segments: head, thorax, scapulae, upper-
arms, forearms, hands, sacrum, thighs, shanks and feet.
Care was taken not to interfere with the reflective
markers.
Two Nokia 5.1TM smartphones (Nokia, Espoo,

Finland) were placed on the participants’ right and left
front pockets, where Kinetikos CE-marked smartphone
application (Kinetikos, Coimbra, Portugal) developed for
Android (Google Inc., Mountain View, CA, USA) re-
corded linear and angular quantities captured by the de-
vice’s built-in hardware sensors throughout the trial
(accelerometer, gyroscope, magnetometer and orienta-
tion data) at 100 Hz.

Data analysis
Kinetikos CE-marked cloud-based platform (Kinetikos,
Coimbra, Portugal) was used to reconstruct participants’
full-body motion using a 3D kinematic computer model
of the skeletal system that includes representation of the
head, thorax, upper and lower extremities and respective
joints, totaling 26 degrees of freedom (DoF). In this
model, the hip was a ball and socket joint (3 DoF). Both
the knee and ankle had a single DoF each set by a revo-
lute joint (1 DoF + 1 DoF). Head and lumbar motion
were each modelled as ball-and-socket joints (3 DoF + 3
DoF). Each upper extremity consisted of 5 DoF; the
shoulder was modelled as a ball-and-socket joint (3
DoF), and the elbow and forearm rotation were each
modelled with revolute joints (1 DoF). Each joint’s co-
ordinate system matches the International Society of
Biomechanics (ISB) recommendations [26, 27]. Rotations
were represented by Cardan-Euler angles, following the
sequences proposed by the ISB [26, 27] for all joints ex-
cept the shoulder, where the sequence XZY was chosen,
which has shown superior results in terms of gimbal
lock incidence and clinical coherence when compared to
the ISB recommendation [28]. For this study, agreement
between 11 DoF was considered: hip flexion/extension,
hip adduction/abduction, hip internal/external rotation,
knee flexion/extension, ankle dorsi/plantar flexion, arm
flexion/extension, arm adduction/abduction, arm in-
ternal/ external rotation, elbow flexion/extension, fore-
arm pronation/supination and wrist flexion/extension.
Both virtual markers and virtual IMUs were placed on
the 3D biomechanical model to match the locations of
the experimental ones.
The markers’ 3D trajectories and IMU orientations

were identified in Qualisys Track Manager (Qualisys AB,
Gothenburg, Sweden) and Xsens MT Manager (Xsens,

Table 1 Summary of the clinical outcomes: Single-task Timed
Up and Go test (TUG), and under Cognitive (CDT) and Motor
(MDT) Dual-task, Movement Disorders Society - Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) Total and Part III
scores, Mini Balance Evaluation Systems Test (Mini-BESTest)

Test Mean ± Standard deviation

TUG (s) 8.81 ± 1.52

TUG + CDT (s) 10.94 ± 3.05

TUG + MDT (s) 9.88 ± 2.12

MDS-UPDRS total 47.17 ± 20.01

MDS-UPDRS III 25.39 ± 11.29

Mini-BESTest 24.11 ± 3.02
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Enschede, Netherlands), respectively. The optoelectronic
system’s markers’ trajectories were then exported while
for each inertial sensor a file with inertial, angular and
orientation data was generated. The model’s segments
were proportionally scaled based on each participant’s
height and the identified trajectories and orientations
were expressed in the model’s coordinate system. While
orientations from the inertial based system were cen-
tered around the pelvis by default, trajectories from the
optoelectronic system were centered around the model’s
pelvis by defining a coordinate system using the left and
right anterior and posterior superior iliac spine markers
[27] and expressing all marker trajectories in this system.
Inverse kinematics was used to reconstruct the optimal
body pose in each frame based on a global optimization
procedure aiming to minimize the weighted sum of
squared distances between measured and model-
determined marker positions [29, 30]. This procedure
was conducted, firstly, based on the optoelectronic data
by minimizing the errors between experimental and
model markers 3D coordinates, and secondly, on the
IMUs data by minimizing the errors between the experi-
mental IMU orientations and the model’s IMU Frames.
The previously described method allows the model’s

joint angles to be used to track the orientation of each
body part. The results were two sets of coordinate values
of the model’s DoF for each time frame of the gait trial.
Gait events (left and right heel strike and toe-off events)

were detected based on four kinematic-based procedures
[31–33]. These algorithms use the calcaneus and toe
marker displacement and velocity time series for the
identification of: horizontal inter-heel distance [31]; foot
center-of-mass vertical velocity [32]; horizontal heel and
toe position relative to the pelvis; horizontal heel and
toe velocity [33]. Since these estimates were found to
identify heel strike and toe-off with unequal consistency
[34], the event indices were further combined in a cus-
tom algorithm yielding a single, more robust outcome.
Events with no correspondence on the optoelectronic
system (i.e., events outside the area captured by the in-
frared cameras) were not considered for analysis. Be-
cause the camera system did not capture the beginning
and end of the laboratory’s diagonal, gait events during
turns were not captured by this system. This process is
described in Fig. 1.
Sensor synchronization in the Kinetikos CE-marked

smartphone application was achieved through linear
interpolation and spherical linear interpolation (for
orientation data). Sensor fusion was performed using
Madgwick’s gradient descent IMU orientation estima-
tion, which combines attitude estimates by integration of
gyroscope measurements and direction obtained by ac-
celerometer measurements – to compensate for long
term gyroscope integration drift – to obtain the device’s
global orientation [35]. Gait events (heel strikes and toe
offs ipsilateral to the side of the pocket the smartphone

Fig. 1 Schematic representation of the optoelectronic criterion and inertial sensor data analysis

Fig. 2 Schematic representation of the smartphone data analysis
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Fig. 3 (See legend on next page.)
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was placed in) were detected using a custom peak detec-
tion algorithm on the global vertical acceleration time
series after filtering with a 4th order Butterworth low-
pass filter at 2 Hz, based on the assessment that the ver-
tical acceleration time series contains alternating high
and low amplitude peaks and that the nadirs immedi-
ately following such peaks are correlated with heel-strike
and toe-off events, respectively [36]. Only events from
the mobile application with a corresponding event on
the criterion were considered for analysis. This sequence
of events is described in Fig. 2.
Several gait parameters were calculated for both sys-

tems: stride duration as the time difference between two
ipsilateral heel-strikes; stance phase duration as the time
between a heel-strike event and the following ipsilateral
toe-off event; swing phase duration as the time between
a toe-off event and the following ipsilateral heel-strike
event; cadence as the number of strides per minute;
stride length given by the difference in a foot’s position
in the sagittal plane between consecutive ipsilateral heel-
strikes for the inertial-based system and by the linear re-
lation of stride length, stride frequency and acceleration
variance [37] for the smartphone application; stride
speed as stride length divided by stride time. In the case
of the inertial sensor-based system, double-support
phase duration and step width were also assessed, as the
time between a heel-strike and the following contralat-
eral toe-off and as the distance in the coronal plane be-
tween the two feet at the instant of a heel-strike,
respectively.

Statistical analysis
Bland-Altman analysis [38] was used to assess the agree-
ment between the 3D full-body kinematics based on in-
ertial sensors and the smartphone application, and the
optoelectronic criterion. Differences between methods
versus the average of their values (bias) and Limits of
Agreement (LoA) were calculated along with 95% confi-
dence intervals (CI). For each gait parameter, the as-
sumption of normality of the differences between
methods was checked with the D’Agostino-Pearson
omnibus test. Bland-Altman analysis was performed with
GraphPad Prism software (GraphPad Software, Inc., La
Jolla, CA).
Welch’s two-sample t-test was used to analyze the sig-

nificance of the differences in each gait parameter be-
tween the Normal difference distribution from PD

patients versus healthy controls and from PD patients
during ON versus OFF states and the bias of the
inertial-based 3D full-body and the smartphone-based
kinematics. Normal difference distributions were pooled
from studies conducted in PD patients in ON and OFF
states, that included an age-matched healthy control
group [39–42].
Agreement between angular kinematics waveforms ob-

tained from marker-based and IMU-driven inverse kine-
matics was assessed as follows: (i) average reconstruction
error was taken as the mean absolute error (MAE); and
(ii) waveform similarity was evaluated through the Lin-
ear Fit Method (LFM) [43]. The LFM yields three coeffi-
cients: α1, the amplitude scaling factor between the
curves being compared and the reference time series; α0,
which predicts any offset; and R2, the strength of the lin-
ear relation between the two time series. LoA for α0 and
α1 were calculated to assess whether these parameters
are statistically different from the same parameters of
the line of equality. Concurrent validity was considered
very high if R2 is above 0.75, fair-to-high if R2 is between
0.4–0.75, and low if R2 is below 0.4. The agreement be-
tween angular kinematics waveforms was performed in
Python software (Python Language Reference, version
3.7, available at http://www.python.org).

Results
Demographic
Nineteen subjects with PD (7 female) were enrolled in
the study (age: 62 ± 12.27 years; disease duration: 6.39 ±
3.70 years; HY: 2 ± 0.23), recruited from CNS, Torres
Vedras, Portugal. Six hundred eighty five gait cycles were
identified from the criterion system and compared to
the corresponding gait cycles selected from the inertial
sensor-based system and the mobile application. Due to
data integrity problems, two subjects were excluded
from the former validation and one from the latter.

Agreement between methods
Agreement of spatiotemporal parameters between either
presented solution and the optoelectronic system used
as a criterion was assessed through Bland-Altman ana-
lysis [38] (Figs. 3 and 4), resulting in an excellent agree-
ment for all metrics. Bias for all spatiotemporal metrics
was at least one order of magnitude below the mean
values (Tables 2 and 3).

(See figure on previous page.)
Fig. 3 Bland-Altman analysis. Each gait parameter presents (for the left and ride side) a plot of differences between 3D full-body kinematics
based on inertial sensors and the optoelectronic criterion versus the mean of the two measurements, and a distribution plot of differences
between measurement by methods. Grey areas represent the 95% CI for bias and limits of agreement
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Fig. 4 Bland-Altman analysis. Each gait parameter presents (for the left and ride side) a plot of differences between smartphone-based kinematics
and the optoelectronic criterion versus the mean of the two measurements, and a distribution plot of differences between measurement by
methods. Grey areas represent the 95% CI for bias and limits of agreement
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Resolution
To analyze the differences between the bias of either
presented system and the Normal difference distribution
from PD patients versus healthy controls and PD pa-
tients during ON and OFF medication states, Welch’s
two-sample t-test was used, with normal difference dis-
tributions pooled from published research in PD patients
in ON and OFF states that included age-matched
healthy control groups [39–42]. As shown in Table 4,
both gait analysis methods presented enough resolution
to capture the differences between PD patients in the
OFF phase and age-matched healthy controls, and be-
tween PD patients in OFF and ON medication states in

all gait parameters with the exceptions of swing duration
and step width.

Reconstruction error and waveform similarity
Average reconstruction error was taken as the MAE.
MAE of 3091 ± 0,136° was achieved at the five lower
limb DoF, while errors of 2348 ± 0,172° were found at
the six upper extremity DoF. Waveform similarity, evalu-
ated through the LFM [43], yielded mean coefficients of
determination (R2) of 0,781 ± 0,050 for the lower DoF
and 0,750 ± 0,022 for the upper DoF, indicating a very
high waveform similarity. For the α1 (scaling factor) and
α0 (scalar addition) parameters, respectively, mean values

Table 2 Agreement between the gait parameters (mean, standard deviation and coefficient of variance - CV) measured by the
inertial-based 3D full-body kinematics (IMU) and the optoelectronic criterion system (OS). Bias and Limits of Agreement (LoA) from
the Bland-Altman analysis with 95% Confident Intervals (CI). The result of the D’Agostino-Pearson omnibus test (K2) is presented for
each gait parameter with respective p value

Mean ± Standard
deviation

CV Bias LoA (lower) LoA (upper) D’Agostino
& Pearson

OS IMU OS
(%)

IMU
(%)

Bias 95% CI 95%
CI

LoA 95% CI 95% CI LoA 95%
CI

95%
CI

K2 p
value

Stride duration
(s)

Left 1086 ±
0,112

1082 ±
0,113

10,293 10,445 0,004 0,002 0,006 −0,026 −0,028 −0,024 0,034 0,032 0,035 0,157 0,925

Right 1092 ±
0,120

1089 ±
0,123

11,026 11,250 0,003 0,001 0,004 −0,028 −0,030 −0,027 0,034 0,032 0,035 3102 0,212

Stance duration
(s)

Left 0,695 ±
0,084

0,6973 ±
0,088

12,037 12,592 −0,002 −0,005 0,000 −0,046 −0,048 −
0,043

0,042 0,039 0,044 0,148 0,929

Right 0,692 ±
0,086

0,700 ±
0,094

12,426 13,460 −0,009 −0,010 −
0,006

−
0,047

−0,052 −
0,047

0,031 0,031 0,036 4681 0,096

Swing duration
(s)

Left 0,391 ±
0,037

0,386 ±
0,034

9379 8861 0,005 0,003 0,008 −0,037 −0,039 −
0,035

0,048 0,046 0,050 1901 0,386

Right 0,397 ±
0,040

0,386 ±
0,035

10,219 9065 0,010 0,008 0,013 −0,031 −
0,034

−
0,029

0,052 0,050 0,054 1299 0,522

Double support
time (s)

Left 0,157 ±
0,029

0,162 ±
0,038

18,635 23,296 −0,006 −
0,008

−
0,003

−
0,049

−0,051 −
0,046

0,037 0,035 0,040 4525 0,104

Right 0,143 ±
0,036

0,152 ±
0,015

25,192 27,339 −0,009 −
0,011

−
0,006

−
0,047

−0,050 −
0,045

0,030 0,028 0,032 0,218 0,897

Cadence
(strides/min)

Left 55,788 ±
5321

56.003 ±
5410

9539 9660 −
0,215

-0,305 -0,124 −
1796

−
1887

−
1706

1366 1276 1457 2307 0,316

Right 55,515 ±
5625

55,649 ±
5766

10,132 10,361 −0,134 −
0,224

−
0,044

−
1760

−
1851

−
1671

1492 1403 1583 3705 0,157

Stride speed (m/
s)

Left 0,800 ±
0,134

0,804 ±
0,133

16,730 16,558 −0,004 −
0,006

−
0,002

−0,046 −
0,048

−0,043 0,037 0,035 0,040 3153 0,207

Right 0,802 ±
0,142

0,805 ±
0,142

17,716 17,655 −0,003 −
0,006

−
0,001

−
0,046

−0,048 −
0,043

0,039 0,037 0,042 4451 0,108

Stride length (m) Left 0,863 ±
0,141

0,864 ±
0,140

16,393 16,252 −0,001 −
0,004

0,001 −
0,044

−0,046 −
0,042

0,041 0,039 0,044 5230 0,073

Right 0,868 ±
0,140

0,868 ±
0,138

16,114 15,884 −0,001 −
0,004

0,002 −
0,048

−
0,051

−
0,046

0,047 0,044 0,049 1173 0,556

Step width (m) Left 0,172 ±
0,077

0,165 ±
0,076

45,050 46,051 0,006 0,004 0,008 −0,032 −
0,034

−
0,029

0,044 0,042 0,046 5416 0,067

Right 0,153 ±
0,061

0,144 ±
0,059

39,942 41,241 0,009 0,007 0,012 −0,034 −0,037 −0,032 0,053 0,051 0,055 3812 0,149
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of 0.699 ± 0.350 and 2.606 ± 2.065° were achieved for the
lower DoF and 0.671 ± 0.176 and 6.79 ± 4.199° for the
upper DoF. Limits of agreement for the scaling factor
and scalar addition were ± 0.685 and ± 4.046 for the
lower DoF and ± 0.346 and ± 8.229 for the upper DoF.
These parameters indicate the validity of this method

to support in-depth analysis of the full-body movement
patterns of PD patients. More detailed results of the
LFM are presented in Table 5. Figure 5 presents the
mean and 95% confidence interval for joint angles
throughout the normalized gait cycle, for the optoelec-
tronic criterion and the inertial sensor-based system.

Discussion
Gait impairments in PD can have a great impact on
functional ability and quality of life and serve as indica-
tors of global health, disease progression, cognition, fall
risk and mortality [4, 5]. In this study, two methods for
characterization of PD gait were developed and validated
comparatively to the current optoelectronic criterion: a
3D full-body kinematic method using inertial sensors for

use in clinical settings, and a mobile-based method to
capture ecologically valid gait parameters.
Many relevant kinematics-related parameters of PD

gait cannot be accurately captured through clinical ob-
servation in supervised in-office visits or subjective pa-
tient journals [6, 14, 15]. Limitations in conventional
methods of motor symptom rating motivate the addition
of quantitative and objective, supervised and unsuper-
vised assessment strategies for effective and impactful
clinical decisions, improving symptom ratings at in-
office consultations and long-term, ecologically valid
monitoring.
Wearable sensors have proven to be feasible instru-

ments for accurate, quantitative movement analysis of
PD patients in supervised environments, with advantages
over the current optoelectronic systems in terms of cost,
ease of use and environment requirements, although val-
idation of full-body kinematic outputs using inertial sen-
sor systems in PD patients is still lacking [10–13].
Current smartphones, with embedded inertial sensors,

have shown potential and feasibility for unsupervised
kinematic analysis during activities of daily living (ADL),

Table 3 Agreement between the gait parameters (mean, standard deviation and coefficient of variance – CV) measured by the
smartphone-based kinematics (Mob) and the optoelectronic criterion system (OS). Bias and Limits of Agreement (LoA) from the
Bland-Altman analysis with 95% Confident Intervals (CI). The result of the D’Agostino-Pearson omnibus test (K2) is presented for each
gait parameter with respective p value

Mean ± Standard
deviation

CV Bias LoA (lower) LoA (upper) D’Agostino
& Pearson

OS Mob OS
(%)

Mob
(%)

Bias 95% CI 95% CI LoA 95% CI 95% CI LoA 95%
CI

95%
CI

K2 p
value

Stride duration
(s)

Left 1071 ±
0,098

1072 ±
0,100

9139 9375 0,000 −0,003 0,002 −0,047 −0,049 −
0,044

0,046 0,044 0,049 3480 0,176

Right 1095 ±
0,109

1098 ±
0,109

9935 9947 −0,002 −
0,006

0,001 −
0,063

−
0,067

−0,059 0,058 0,054 0,062 3316 0,191

Stance duration
(s)

Left 0,688 ±
0,079

0,696 ±
0,085

11,457 12,205 −0,008 −0,012 −0,004 −
0,074

−0,077 −
0,070

0,058 0,054 0,061 3969 0,137

Right 0,686 ±
0,081

0,705 ±
0,085

11,878 12,045 −0,019 −0,023 −
0,015

−
0,084

−0,088 −
0,080

0,046 0,042 0,050 5530 0,063

Swing duration
(s)

Left 0,387 ±
0,032

0,379 ±
0,037

8279 9747 0,008 0,004 0,012 −0,058 −0,062 −
0,054

0,074 0,070 0,077 4341 0,114

Right 0,403 ±
0,039

0,389 ±
0,044

9661 11,303 0,014 0,010 0,018 −0,055 −0,060 −
0,051

0,083 0,079 0,087 5574 0,062

Stride speed
(m/s)

Left 0,802 ±
0,136

0,807 ±
0,139

16,919 17,179 −0,005 −0,010 0,000 −0,091 −0,095 −
0,086

0,080 0,076 0,085 5921 0,052

Right 0,808 ±
0,145

0,812 ±
0,148

17,951 18,244 0,014 −0,055 0,083 −0,102 −
0,108

−0,096 0,097 0,091 0,103 5246 0,073

Cadence
(strides/min)

Left 56,303 ±
4882

56,287 ±
4983

8670 8852 0,016 −0,119 0,151 −
2303

−
2432

−
2162

2335 2194 2464 2681 0,262

Right 54,984 ±
5347

54,885 ±
5325

9724 9701 0,099 −
0,100

0,299 −
3105

−
3295

−
2896

3303 3094 3494 4443 0,108

Stride length
(m)

Left 0,862 ±
0,142

0,868 ±
0,145

16,512 16,731 −0,006 −0,010 −
0,002

−0,075 −
0,079

−0,072 0,063 0,059 0,067 1972 0,373

Right 0,896 ±
0,121

0,906 ±
0,107

16,139 15,851 −0,008 −0,013 0,003 −0,084 −0,088 −
0,079

0,068 0,063 0,072 3317 0,190
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effectively capturing relevant parameters [16]. Nonethe-
less, validation of smartphones’ use for movement ana-
lysis in PD patients is still limited [19–22].

Agreement between methods
Bland Altman analysis for both the 3D full-body kinemat-
ics based on inertial sensors and the smartphone-based
analysis shows an excellent agreement between the pre-
sented methods and the criterion.
Some assumptions need to be taken into consideration:

the mean and standard deviation of the differences are con-
stant throughout the range of measurements; and these are
from an approximately normal distribution. Scatter plots and
histograms of Figs. 3 and 4 bring light into each, respectively,

showing the range of kinematic measurements follows a
Gaussian distribution (verified by the D’Agostino-Pearson
omnibus test results presented in Tables 2 and 3). Bias and
LoA amplitude for all metrics was at least one order of mag-
nitude below the mean values for each parameter, suggesting
high agreement between the methods. The lack of observ-
able trend in the differences across the measurements rein-
forces that there is a strong agreement between the systems
across a range of measurements.

Resolution
Either of the presented gait analysis methods showed
enough resolution to capture the differences between
PD patients and age-matched healthy controls, and PD

Table 4 Absolute normal difference distribution (mean ± standard deviation) from PD patients versus healthy controls (PDvsControl)
and Parkinson’s disease patients between ON and OFF states (ONvsOFF) for each gait parameter [39–42]. Bias (mean ± standard
deviation) values for each gait parameter for the inertial-based 3D full-body kinematics (IMU Bias) and the smartphone-based
kinematics (Mob Bias). P-value is determined by Welch’s t-test when comparing PDvsControl / IMU Bias, PDvsControl / Mob Bias,
ONvsOFF / IMU Bias and ONvsOFF / Mob Bias

PDvsControl
mean ± SD

ONvsOFF
mean ± SD

IMU Bias
mean ± SD

Mob
Bias
mean ±
SD

PDvsControl /
IMU Bias
p value

PDvsControl /
Mob Bias
p value

ONvsOFF /
IMU Bias
p value

ONvsOFF /
Mob Bias
p value

Stride duration
(s)

0.040 ± 0.126 0.03 ± 0,156 0.003 ± 0,015 −0.001 ±
0,027

0,0013 0,0014 0,0203 0,0166

Stance duration
(s)

0.044 ± 0,093 0.032 ± 0,094
a

−0.005 ± 0.021 −0.014 ±
0,033

< 0.0001 < 0.0001 0.0002 0.0002

Swing duration
(s)

0.009 ± 0,273 0.007 ± 0,053 0.008 ± 0,022 0.011 ±
0,034

0,9754 0,9518 0,8876 0,6776

Double support
time (s)

0.253 ± 0.035
a

0.164 ± 0,026
a

−0.007 ± 0,021 – < 0,0001 – < 0,0001 –

Cadence
(strides/min)

4.000 ± 16.101 3.500 ± 13.086 −0.175 ± 0,819 0.058 ±
1.405

0,0331 0,0458 0,0077 0,0141

Stride speed
(m/s)

0.160 ± 0,325
a

0.060 ± 0,030 −0.004 ± 0,021 −0.004 ±
0,047

< 0,0001 < 0,0001 0,0040 0,0092

Stride length
(m)

0.210 ± 0,292
a

0.140 ± 0,292
a

−0.001 ± 0,023 −0.007 ±
0,037

< 0,0001 < 0,0001 < 0,0001 < 0,0001

Step width (m) 0.008 ± 0,031 0.001 ± 0,038 0.008 ± 0,021 – > 0,9999 – 0,2520 –

a – indicates that statistical significant differences were reached in the original study from which the normal difference distribution was pooled. Significant results
are displayed in bold

Table 5 Linear Fit Method [43] results comparing inertial-based 3D full-body kinematics and the optoelectronic criterion system.
Outcome parameters are: α1 (scaling factor), α0 (scalar addition) and R2. Average reconstruction error is given by the Mean Absolute
Error (MAE)

Hip
Flexion

Hip
Adduction

Hip
Rotation

Knee
Extension

Ankle
Dorsiflexion

Arm
Flexion

Arm
Adduction

Arm
Rotation

Elbow
Flexion

Pronation Wrist
Flexion

α1 Left 0,910 0,481 0,258 1117 0,816 0,395 0,653 0,622 0,668 0,933 0,593

Right 0,903 0,487 0,035 1144 0,841 0,478 0,611 0,527 0,810 1040 0,725

α0 Left − 1716 −0,467 − 6486 4331 0,051 7335 −11,419 − 3013 6777 − 8582 2687

Right − 3101 0,948 − 5370 − 2399 1187 −11,133 9456 − 0,108 7735 13,084 0,122

R2 Left 0,919 0,737 0,514 0,957 0,860 0,798 0,875 0,770 0,868 0,685 0,524

Right 0,913 0,561 0,608 0,950 0,789 0,843 0,856 0,683 0,887 0,678 0,534

MAE
(°)

Left 2296 3297 3511 2950 2924 2990 2170 2339 1830 2368 2342

Right 2504 3630 3901 2957 2946 2713 2248 2504 2118 2615 1944
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patients’ differences between ON and OFF medication
states in all gait parameters with exception of swing dur-
ation and step width – these differences were found to
be non-statistically different in the original studies [39–
42] (Table 4). These non-statistically significant differ-
ences are on the order of a thousandth of a second
(swing duration) and thousandth of a meter (step width)
which may raise a question about their clinical
relevance.

Reconstruction error and waveform similarity
Agreement between angular kinematics waveforms ob-
tained from marker-based and IMU-driven inverse kine-
matics was assessed based on the MAE and the LFM.
Average reconstruction error was estimated by the
MAE, resulting in magnitudes inferior to the mean rela-
tive orientation accuracy of Xsens IMUs sensors of 5°
for trials up to 60 s [44]. Results from the LFM showed
high mean coefficients of determination, indicating a

Fig. 5 Joint angles throughout the normalized gait cycle for full-body kinematics based on inertial sensors (mean: solid green line: 95%
confidence interval: green shaded areas) and the optoelectronic gold (mean: solid purple line: 95% confidence interval: purple shaded areas). Y-
axis labels indicate positive values
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high waveform similarity across the full gait cycle for
both lower- and upper-body DoF. The LoA of the scal-
ing factor and scalar addition parameters of the LFM in-
clude 1 and 0, respectively, leading to conclude there
exists a significant relationship between results obtained
through the two movement analysis methods [45], albeit
whether the LoA are small enough to ensure agreement
requires a clinical perspective. The low MAE and high
waveform similarity between the 3D full-body IMU-
based movement reconstruction and optoelectronic cri-
terion provide the needed evidence to support an in-
depth analysis of the full-body movement patterns in PD
patients using this method.
The previous points corroborate that the IMU-based

gait analysis system is capable of producing results com-
parable to the criterion, providing a valid, objective full-
body kinematic analysis with advantages in terms of
cost, setup complexity and time consumption [7–9].
Nonetheless, this analysis is still subject to the effects of
supervision and requires an in-person consultation. Com-
plementing this approach, the smartphone-based solution,
while unable to produce angular results or full-body gait
analysis, has shown good agreement with the criterion
and enough resolution to capture clinically relevant kine-
matic parameters, providing a quantitative assessment of
spatiotemporal gait parameters with potential for use in
ecologically valid environments with minimal impact on
daily living, going beyond traditional, subjective measures
of disease severity between consultations [14, 15]. The
combination of these solutions allows for a more holistic,
quantitative assessment of PD gait.
Further studies will be required to estimate the val-

idity and reliability of these systems in a broader
spectrum of the disease stage and respective motor
symptoms. In addition, it is important to expand val-
idation of the smartphone-based system beyond su-
pervised environments and into patient-relevant
scenarios to evaluate performance in unsupervised
ADL involving more complex motions and providing
more accurate insight into the patient’s motor
symptoms.

Conclusions
Our results show that the IMU-based full-body gait analysis
provides accurate results using simple sensors with a reduced
setup and environment complexity when compared to an
optoelectronic system. The presented mobile application can
be a user-friendly solution to collect ecologically valid gait
parameters, translating into a greater clinical insight on pre-
viously unreported or subjectively reported motor symptoms.
The resolution of either method is sufficient to capture rele-
vant statistical differences in PD patients gait parameters
when compared to age-matched controls, and between their
ON and OFF states, making both presented systems

clinically viable solutions with the potential to improve PD
patients’ quality of life by opening the door to more person-
alized care based on quantitative objective metrics obtained
not only during the moments of contact between patient
and physician but longitudinally during ADL. Both the IMU-
based and smartphone-based solutions produce results com-
parable to the criterion using commodity wearable technol-
ogy. This validation will hopefully enable more widespread
adoption of such systems for clinical practice and clinical
trials.
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