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Abstract

Background: Hepatocyte growth factor (HGF) plays a role in neuronal survival and development, and has been
implicated in neurodegenerative diseases. We sought to examine the associations of the CSF HGF with Alzheimer’s
disease (AD) pathology and cognitive function.

Methods: A total of 238 participants (including 90 cognitively normal (CN) and 148 mild cognitive impairment
(MCI)) who had measurements of CSF HGF were included from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database. Multiple linear regression models were utilized to explore the cross-sectional
associations of CSF HGF with AD biomarkers (including Aβ42, pTau, and tTau proteins) in non-demented
participants. Moreover, linear mixed-effects regression models were utilized to explore the longitudinal
associations of HGF subgroups with cognitive function. Mediation analyses were utilized to explore the
mediation effects of AD markers.

Results: MCI individuals had significantly increased CSF HGF compared with the CN individuals. Results of
multiple linear regressions showed significant correlations of CSF HGF with CSF Aβ42, pTau, and tTau in non-
demented participants. Higher level of baseline CSF HGF was associated with faster cognitive decline.
Influences of the baseline CSF HGF on cognition were partially mediated by Aβ42, pTau, and tTau
pathologies.

Conclusions: High concentrations of HGF in CSF may be related to faster cognitive decline. The cognitive
consequences of higher CSF HGF partly stem from AD pathology, which suggests that the CSF HGF may be
an attractive biomarker candidate to track AD progression.
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Background
Alzheimer’s disease (AD) is pathologically characterized
by aggregated amyloid plaques and neurofibrillary tan-
gles (NFTs) [1]. Amyloid-β (Aβ) and tau/phosphorylated
tau (pTau) biomarkers in cerebrospinal fluid (CSF) have
been identified as reliable diagnostic biomarkers of AD
pathology [2, 3]. Hepatocyte growth factor (HGF) is a
plasminogen-like protein consisting of light and heavy
chains of 35 and 65 kDa. The receptor of HGF was iden-
tified as the c-Met protooncogene product of transmem-
brane receptor tyrosine kinase (RTK) [4, 5]. HGF-cMet
system is involved in a wide range of cellular targets (in-
cluding epithelial, endothelial, and neurons et al.) [6].
HGF-induced signaling through the receptor Met initi-
ates a series of cellular responses (including mitogenesis,
cell motility and morphogenesis et al.) [6, 7]. It has been
reported that the HGF can express in the mammalian
central nervous system (CNS) [8–11]. HGF immunore-
activity was present in astrocytes and microglia, which
was increased in both lacunar strokes and AD [11, 12].
HGF-Met system may plays an important role in micro-
glial reactions to CNS injuries [13]. Moreover, several
studies suggested that the HGF levels were increased in
brain tissue, cerebrospinal fluid (CSF), and serum of AD
patients [12, 14, 15]. At present, there is insufficient evi-
dence on associations between HGF and AD pathology.
Here, the aim of this study was to evaluate the associ-
ation of CSF HGF with CSF AD biomarkers and cogni-
tive function. We also sought to explore whether the AD
pathology mediated the associations between the HGF
and cognitive function.

Methods
ADNI database
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data are deposited in a open access repository and can
be accessed at http://adni.loni.usc.edu. The ADNI
(launched in 2003) was led by Dr. Michael W. Weiner.
All participants were recruited from more than 50 sites
across the Canada and United State. The ADNI aim to
develop clinical, biochemical, and imaging biomarkers
for tracking AD. ADNI was approved by all regional eth-
ical committees, and contained written informed-
consent documents of all participants.

Participants
From ADNI, we included only cognitively normal (CN)
(n = 90), early MCI or late MCI (n = 148) participants.
Cerebral amyloid-β accumulation generally precedes the
dementia stage by many years. We excluded individuals
with dementia (due to AD), since the aim of this study
was to examine detection of the earliest accumulation of
amyloid-β. All participants underwent assessments of
CSF HGF and CSF AD biomarkers at baseline. All

participants were adults aged 55 to 90 years. The specific
ADNI diagnostic criteria for distinguishing CN, MCI,
and AD participants were summarized in Additional
Table 1 [16, 17]. CN and MCI subjects were defined as
non-demented individuals in the study.

CSF measurements
In ADNI, CSF procedural protocols have been described
previously. INNOBIA AlzBio3 immunoassay (Fujirebio,
Belgium) was used to measure CSF AD biomarkers (in-
cluding CSF Aβ1–42, total tau (tTau), and pTau (pg/ml)).
The within-batch precision values were < 10% (5.1–7.8%
for Aβ1–42, 4.4–9.8% for tTau and 5.1–8.8% for pTau).
CSF HGF was measured using a multiplex panel. The

multiplex panel is based upon Luminex immunoassay
technology and has been developed by Rules Based
Medicine (MyriadRBM) to measure a range of inflam-
matory, metabolic, lipid and other disease relevant indi-
ces. Quality control (QC) data that is specific for the
CSF samples included in this study are the test/retest re-
sults for the 16 randomly selected CSF samples (http://
adni.loni.usc.edu). Analytes were removed if the mean
percentage difference was greater than 35% or the test-
retest sample was less than 7 or the mean absolute per-
centage difference was greater than 60% or if the Bland-
Altman slope and intercept significantly differed from
zero. Participants who had extreme outliers (< 3-fold
or > 3-fold standard deviations (SD) from the mean
value) were removed. Finally, 5 participants were re-
moved from the data set.

Cognitive assessment
Three cognitive measures (Mini-Mental State Examin-
ation (MMSE), ADNI memory (ADNI-MEM), and
ADNI executive function (ADNI-EF)) were used to
evaluating cognitive functions in this study. The ADNI-
MEM was developed from the Logical Memory Test,
Rey Auditory Verbal Learning Test, MMSE, and Alzhei-
mer’s Disease Assessment Scale cognitive subscale
(ADAS-Cog) [18]. ADNI-EF consists of Category
Fluency-vegetables, 5 Clock Drawing items (circle,
symbol, numbers, hands, time), Category Fluency-
animals, Digit Span Backwards, Wechsler Adult
Intelligence Scale-Revised (WAIS-R) Digit Symbol Sub-
stitution, and Trail-Making Test parts (A and B) [19].

APOE ε4 genotyping
The APOE genotyping was performed by Hhal restric-
tion enzyme digestion, polymerase chain reaction (PCR)
amplification, and standard gel resolution and
visualization processes [20, 21]. Quality-controlled geno-
typing data were obtained from the database. Individuals
were classified as carriers of one APOE � 4 allele, carriers
of two APOE � 4 alleles, and APOE � 4 non-carriers.
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White matter hyperintensities (WMHs) measurement
All subjects were examined using 3.0-Tesla MRI scan-
ner. The procedure is described in previous studies [22,
23]. All parameters were available through the database
website (http://adni.loni.usc.edu/methods/mri-tool/mri-
analysis). White matter hyperintensities volume
(WMHV) were measured using the Bayesian approach
for the segmentation of high-resolution 3D MPRAGE
T1-weighted and T2-FLAIR sequences [24].

Statistical analysis
We used ANOVA, non-parametric Kruskal-Wallis H
test, and Chi-squared test to compare the baseline clin-
ical and demographic characteristics. In addition, pear-
son correlation tests (for continuous variables) were
used to explore the associations between the baseline
CSF AD biomarkers (normally distributed) and CSF
HGF. All the non-demented participants were grouped
by tertiles of CSF HGF at baseline (Group A lowest ter-
tile; Group B middle tertile; Group C highest tertile).
We used multiple linear regressions to explore the asso-
ciations of HGF subgroups (independent variable) with
CSF AD biomarkers and cognition (dependent variables)
(covariates including age, sex, years of education, APOE4
status, and diagnosis). We used Tukey HSD post hoc
test to perform pairwise multiple comparisons. We used
linear mixed-effects regression models to explore the
longitudinal relationship of HGF subgroups with cogni-
tive function (covariates including age, sex, years of edu-
cation, APOE4 status, baseline diagnosis, and baseline
cognitive status). GraphPad Prism 8.00 and R version
3.6.2 software were used for statistical analyses and fig-
ure preparation.
Longitudinal rates of change in cognitive function (in-

cluding MMSE, ADNI-MEM, and ADNI-EF) were com-
puted by using linear mixed models (covariates
including age, sex, years of education, APOE4 status,
diagnosis, and baseline cognitive status). We estimated
the mean rates of change (by the sim function in the
arm package with 10,000 replicates) for the whole sam-
ples [25]. Mediation analyses were performed to test and
quantify the mediation effects of AD pathology on the
associations of the CSF HGF with cognitive function
(covariates including age, sex, education, and APOE4
status). We used bootstrapping (10,000 iterations)
methods to estimate the 95% CI [26]. These analyses
were performed by using R software packages (“lm”,
“arm”, “lme4”, “ggplot2”, and “mediation”). P < 0.05 was
considered significant.

Results
Characteristics of participants
A total of 238 participants (including 90 CN and 148
MCI) who had measurements of CSF AD biomarkers

(including Aβ42, pTau, and tTau proteins) and HGF
were included. Demographical and clinical characteris-
tics are described in Table 1. The participants were aged
56 to 90 (mean ± SD age, 75.1 ± 6.6) years. The study
population had a female proportion of 40.3%, 15.8 ± 2.9
years of education, and an APOE4 positive percentage of
42.4%. The level of CSF HGF was significantly higher in
MCI (P = 0.00639) compared to CN participants (Figure
1and Table 1). There was no significant difference be-
tween the diagnosis subgroups in WMHV (P = 0.894)
(Table 1).
The baseline CSF HGF is significant associated with

the CSF Aβ42 (R = − 0.23, P = 0.00077), CSF pTau (R =
0.38, P = 1.90e-08), and CSF tTau (R = 0.44, P = 7.10e-11)
in non-demented participants (Fig. 2). The associations
between CSF HGF and CSF AD biomarkers (stratified
by diagnosis) are presented in Additional Figure 1 to
Figure 3. The demographic and clinical characteristics of

Table 1 Demographic characteristics for all the participants

Characteristics CN MCI P

N 90 148

Age (Mean ± SD, year) 75.60 ± 5.46 74.82 ± 7.21 0.353

Sex (Female, %) 45 (50) 47 (31.8) 0.005

Education (Mean ± SD, year) 15.57 ± 2.94 15.96 ± 2.94 0.284

APOE ε4 carrier status (Yes, %) 22 (24.4) 79 (53.4) < 0.0001

WMHV (Mean ± SD, cm3) 0.77 ± 1.93 0.82 ± 2.64 0.894

CSF HGF (Mean ± SD, ng/ml) 0.39 ± 0.15 0.45 ± 0.17 0.006

ANOVA, non-parametric Kruskal-Wallis H test, and Chi-squared test were used
to compare the baseline demographic and clinical characteristics.
Abbreviations:CN cognitively normal;MCI mild cognitive impairment;WMHV
white matter hyperintensities volume;CSF cerebrospinal fluid;HGF Hepatocyte
Growth Factor

Fig. 1 Associations of diagnosis with baseline CSF HGF. CSF HGF
was significantly higher in MCI (P = 0.00639) compared to
CN participants
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non-demented participants (stratified by HGF concen-
tration) are presented in Table 2. Baseline demographics
were similar in the three subgroups (except mean levels
of age). There was no significant difference in WMHV
between different diagnostic groups and CSF HGF sub-
groups (Table 1 and Table 2). After controlling for a
range of potential confounders (age, sex, years of educa-
tion, APOE4 status, and diagnosis), the HGF tertiles
were significantly associated with baseline CSF Aβ42
(β = − 8.4660, p = 0.0358), pTau (β = 6.2368, p = 3.96e-
07), and tTau (β = 21.6103, p = 3.00e-10) (Table 3).
Significant associations were not found between the
CSF HGF and baseline cognitive status (Table 3).
Using post hoc tests (Tukey HSD), it was found that
CSF Aβ42 was reduced among Group C participants
compared to Group A participants. CSF pTau and
CSF tTau were increased among Group C partici-
pants, as compared to Group A and Group B partici-
pants. (Additional Table 2).

Longitudinal relationship between CSF HGF and cognitive
function
After controlling for a range of potential confounders
(age, sex, years of education, APOE4 status, baseline

diagnosis, and baseline cognitive status), individuals in
group C (the highest tertile) showed faster decline in
MMSE (β = − 0.2155, P = 0.0371), ADNI_MEM (β = −
0.0271, P = 0.0397), and ADNI_EF (β = − 0.0442, P =
0.0037) compared to group A (the lowest tertile) (Fig. 3
and Additional Table 3).

Causal mediation analyses
We investigated whether these AD pathology mediated
the influences of CSF HGF on cognitive function. After
controlling for age, sex, years of education, and APOE4
status, 45.59% of the total association of the CSF HGF
with the decline in MMSE scores (Fig. 4A), 51.59% of
the total association of the CSF HGF with the decline in
ADNI-MEM scores (Fig. 4B), and 42.75% of the total as-
sociation with the decline in ADNI-EF scores (Fig. 4C),
were attributed to baseline Aβ42. Moreover, 94.59% of
the total association of the CSF HGF with the decline in
MMSE scores (Fig. 4D), 89.52% of the total association
of the CSF HGF with the decline in ADNI-MEM scores
(Fig. 4E), and 58.54% of the total association with the de-
cline in ADNI-EF scores (Fig. 4E), were attributed to
baseline pTau. In addition, 93.33% of the total associ-
ation of the CSF HGF with the decline in MMSE scores

Fig. 2 Associations of baseline CSF HGF with CSF AD biomarkers in non-demented participants. The baseline CSF HGF is significant associated
with the CSF Aβ42 (R = − 0.23, P = 0.00077) (A), CSF pTau (R = 0.38, P = 1.90e-08) (B), and CSF tTau (R = 0.44, P = 7.10e-11) (C)

Table 2 Demographic characteristics for the non-demented participants

Characteristics Group A Group B Group C P

N 84 85 69

Age (Mean ± SD, year) 74.52 ± 6.65 73.92 ± 6.18 77.30 ± 6.60 0.0038

Sex (Female, %) 39 (46.4) 30 (35.3) 23 (33.3) 0.1872

Education (Mean ± SD, year) 15.73 ± 2.94 15.67 ± 3.13 16.08 ± 2.71 0.6551

APOE ε4 carrier status (Yes, %) 33 (39.3) 33 (38.8) 35 (50.7) 0.5560

WMHV (Mean ± SD, cm3) 1.03 ± 3.49 0.52 ± 0.92 0.87 ± 1.98 0.076

CSF HGF (Mean ± SD, ng/ml) 0.25 ± 0.09 0.44 ± 0.04 0.62 ± 0.07 < 0.0001

All participants were grouped by tertiles of CSF HGF at baseline. Group A lowest tertile; Group B middle tertile; Group C highest tertile. ANOVA, non-parametric
Kruskal-Wallis H test, and Chi-squared test were used to compare the baseline demographic and clinical characteristics. Abbreviations:WMHV white matter
hyperintensities volume;CSF cerebrospinal fluid;HGF Hepatocyte Growth Factor
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(Fig. 4G), 89.16% of the total association of the CSF
HGF with the decline in ADNI-MEM scores (Fig. 4H),
and 53.92% of the total association with the decline in
ADNI-EF scores (Fig. 4I), were attributed to baseline
tTau.

Discussion
To our knowledge, this is the first study to explore the
association between CSF HGF and AD biomarkers. MCI
participants had higher levels of CSF HGF compared to
CN participants. Higher concentration of CSF HGF was
related to higher levels of CSF markers of AD pathology
and faster cognitive decline in non-demented partici-
pants. Influences of CSF HGF on cognition were par-
tially mediated by AD pathology.
It has been reported that the HGF level was increased

in CSF in AD, which was in line with our findings [14].
Previous studies have confirmed that HGF is expressed
in various brain cell types (including neurons, astrocytes,
microglia, and oligodendrocytes) [11, 12, 27]. Astrocytes
involved in regeneration of neurons and glia may played
important roles in HGF production in CSF [28].

Microglia- and astroglia- mediated innate immune re-
sponses are associated with aggregated and misfolded
proteins, which contribute to clinical staging and disease
progression in AD [29, 30]. The HGF immunoreactivity
was presented in neurons, microglia and astrocytes,
which was increased in AD [11, 12]. This increase in
HGF immunoreactivity is most likely due to the prolifer-
ation of both reactive microglia and astrocytes around
the periphery of senile plaques. The HGF may be
expressed in reaction to AD pathology [12]. In addition,
the production of HGF in the CSF might reflect damage
and repair of white matter of the brain and spinal cord
in neurologic disease [28]. Tsuboi et al. found that the
concentration of CSF HGF could reflect white matter
damage in AD individuals [14]. There were direct links
between AD pathology and white matter macrostruc-
tural and microstructural damage, which suggested a po-
tential correlation between HGF and AD pathology [31,
32].
The cMet is a multifunctional protein receptor that

binds HGF and able to mediate all the known effects of
HGF [33]. HGF-cMet signaling induces cell proliferation,
glucose metabolism, neuroregeneration, and neuropro-
tection [34–36]. Hamasaki et al.’ study indicated that the
cMet level was decreased in granule cells of the dentate
gyrus and hippocampal pyramidal neurons in AD brains
[37]. In particular, cMet in hippocampal pyramidal neu-
rons decreased more significantly than in neocortical
neurons [37]. It has reported that the HGF partially me-
diates cognitive enhancement, as well as structural and
functional recovery by activating cMet-AKT-GSK3β sig-
naling pathway in the AD hippocampus [38]. Moreover,
HGF can mediate tau hyperphosphorylation via activa-
tion of cMet-AKT-GSK3β signaling pathway [38]. The
cMET plays a central role in neurotrophic, and its de-
cline may adversely affect neuronal survival. HGF maybe
increase reactively in the AD brains. Because the hippo-
campus play important roles in cognitive function, the

Fig. 3 Associations of the CSF HGF with longitudinal changes in cognitive function in non-demented participants. Longitudinal rates of change
in cognitive function (including MMSE (A), ADNI-MEM (B), and ADNI-EF (C)) were computed by using linear mixed models. All models were
adjusted for age, sex, years of education, APOE4 status, baseline diagnosis, and baseline cognitive status

Table 3 The associations of CSF HGF groups with baseline CSF
AD biomarkers and cognitive function

Dependent
variable

CSF HGF

beta p value

CSF Aβ42 −8.4660 0.0358

CSF pTau 6.2368 3.96e-07

CSF tTau 21.6103 3.00e-10

MMSE scores 0.0449 0.7268

ADNI-MEM scores −0.0461 0.3075

ADNI-EF scores −0.0661 0.2953

Multiple linear regression models were utilized to explore these associations.
All models were adjusted for age, sex, years of education,APOE4 status, and
diagnosis at baseline. Group A lowest tertile; Group B middle tertile; Group C
highest tertile. Abbreviations:AD Alzheimer’s disease;CSF cerebrospinal fluid;
HGF Hepatocyte Growth Factor
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decrease in cMet level may help to explain, at least in
part, the relationships between CSF HGF and cognitive
function [37]. In addition, higher levels of serum HGF
were also associated with pre-dementia and AD [15].
HGF is relatively stable in serum, and can crosses the
blood-brain barrier (BBB) in an intact form [39]. At least
a third of HGF can reach the cerebral circulation [38].
The serum HGF may be a potential biomarker for small
vessel disease in MCI and AD individuals. In addition,
the correlation between AD pathology and BBB

dysfunction has been well-reported [40, 41]. A vicious
circle between neurovascular unit impairments and Aβ
accumulation may exist during disease progression [40].
The increase of CSF HGF may also be partially caused
by increased permeability via BBB. The BBB may play a
potential mediational role in the relationships between
CSF HGF and cognition. Moreover, hypoperfusion and
BBB impairment appear in the normal-appearing white
matter (NAWM) and WMH, which increase in the
proximity of the WMH [42]. More sensitive indicators

Fig. 4 Mediation effects of baseline AD pathology on the associations of CSF HGF with cognitive function in non-demented participants. Results
of mediation analyses suggested that 45.59% of the total association of the CSF HGF with the decline in MMSE scores (A), 51.59% of the total
association of the CSF HGF with the decline in ADNI-MEM scores (B), and 42.75% of the total association with the decline in ADNI-EF scores (C),
were attributed to baseline Aβ42. Moreover, 94.59% of the total association of the CSF HGF with the decline in MMSE scores (D), 89.52% of the
total association of the CSF HGF with the decline in ADNI-MEM scores (E), and 58.54% of the total association with the decline in ADNI-EF scores
(F), were attributed to baseline pTau. In addition, 93.33% of the total association of the CSF HGF with the decline in MMSE scores (G), 89.16% of
the total association of the CSF HGF with the decline in ADNI-MEM scores (H), and 53.92% of the total association with the decline in ADNI-EF
scores (I), were attributed to baseline tTau. All models were adjusted for age, sex, years of education, and APOE4 status
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appropriately investigated and resolved. The study procedures were
approved by the institutional review boards of all participating centers
(https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf), and written informed consent was obtained
from all participants or their authorized representatives. Ethics approval was
obtained from the institutional review boards of each institution involved:
Oregon Health and Science University; University of Southern California;
University of California—San Diego; University of Michigan; Mayo Clinic,
Rochester; Baylor College of Medicine; Columbia University Medical Center;
Washington University, St. Louis; University of Alabama at Birmingham;
Mount Sinai School of Medicine; Rush University Medical Center; Wien
Center; Johns Hopkins University; New York University; Duke University
Medical Center; University of Pennsylvania; University of Kentucky; University
of Pittsburgh; University of Rochester Medical Center; University of California,
Irvine; University of Texas Southwestern Medical School; Emory University;
University of Kansas, Medical Center; University of California, Los Angeles;
Mayo Clinic, Jacksonville; Indiana University; Yale University School of
Medicine; McGill University, Montreal-Jewish General Hospital; Sunnybrook
Health Sciences, Ontario; U.B.C. Clinic for AD & Related Disorders; Cognitive
Neurology—St. Joseph’s, Ontario; Cleveland Clinic Lou Ruvo Center for Brain
Health; Northwestern University; Premiere Research Inst (Palm Beach Neur-
ology); Georgetown University Medical Center; Brigham and Women’s Hos-
pital; Stanford University; Banner Sun Health Research Institute; Boston
University; Howard University; Case Western Reserve University; University of
California, Davis—Sacramento; Neurological Care of CNY; Parkwood Hospital;
University of Wisconsin; University of California, Irvine—BIC; Banner Alzhei-
mer’s Institute; Dent Neurologic Institute; Ohio State University; Albany Med-
ical College; Hartford Hospital, Olin Neuropsychiatry Research Center;
Dartmouth-Hitchcock Medical Center; Wake Forest University Health Sci-
ences; Rhode Island Hospital; Butler Hospital; UC San Francisco; Medical Uni-
versity South Carolina; St. Joseph’s Health Care Nathan Kline Institute;
University of Iowa College of Medicine; Cornell University; and University of
South Florida: USF Health Byrd Alzheimer’s Institute.
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