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Abstract

Background: Recent resting-state fMRI studies demonstrated functional dysconnectivity within the central pain
matrix in migraineurs. This study aimed to investigate the spatial distribution and amplitude of low-frequency
oscillations (LFOs) using fractional amplitude of low-frequency fluctuation (fFALFF) analysis in migraine patients
without aura, and to examine relationships between regional LFOs and clinical variables.

Methods: Resting-state fMRI data were obtained and preprocessed in 44 migraine patients without aura and 31
matched controls. fALFF was computed according to the original method, z-transformed for standardization, and
compared between migraineurs and controls. Correlation analysis between regional fALFF and clinical variables was
performed in migraineurs as well.

Results: Compared with controls, migraineurs had significant fALFF increases in bilateral ventral posteromedial
(VPM) thalamus and brainstem encompassing rostral ventromedial medulla (RVM) and trigeminocervical complex
(TCC). Regional fALFF values of bilateral VPM thalamus and brainstem positively correlated with disease duration,
but not with migraine attack frequency or Migraine Disability Assessment Scale score.

Conclusions: We have provided evidence for abnormal LFOs in the brainstem including RVM/TCC and thalamic
VPM nucleus in migraine without aura, implicating trigeminothalamic network oscillations in migraine
pathophysiology. Our results suggest that enhanced LFO activity may underpin the interictal trigeminothalamic
dysrhythmia that could contribute to the impairments of pain transmission and modulation in migraine. Given our
finding of increasing fALFF in relation to increasing disease duration, the observed trigeminothalamic dysrhythmia
may indicate either an inherent pathology leading to migraine headaches or a consequence of repeated attacks on
the brain.
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Background

Migraine is a disabling and common neurological dis-
order with a very high prevalence in the general popula-
tion, manifested by recurrent pulsating headache of
moderate-to-severe intensity, nausea/vomiting, and hy-
persensitivities to light, odor, sound, and touch [1]. Its
fundamental pathophysiological mechanism has not
been fully explicated; however, mounting evidence
strongly suggests that migraine is a cortical brain dis-
order resulting from a dysfunctional neurolimbic pain
networks [2, 3].

Recent advances in neuroimaging techniques have
enormously contributed to our understanding of mi-
graine pathophysiology. Specifically, morphometric MRI
studies showed volume or cortical thickness changes of
the brain, indicating macrostructural abnormalities of
the central pain matrix in migraineurs [4—7]. Diffusion
tensor imaging investigations exhibited alterations of the
microstructural integrity and structural connectivity in
pain processing regions including trigemino-thalamo-
cortical pathway in migraine [5, 6, 8, 9]. Notably, a num-
ber of task-specific functional MRI (fMRI) studies have
consistently revealed aberrant brain responses to visual,
olfactory, and painful cutaneous stimuli, and lack of nor-
mal habituating response between migraine attacks [5, 6,
10]. Identification of the underlying mechanisms that
give rise to sensory hypersensitivities and that provoke
migraine headaches in response to sensory stimuli could
help to improve our understanding of neural dysfunction
in migraine pathophysiology.

Currently, resting-state fMRI has been increasingly used
to evaluate large-scale functional connectomes at the
whole-brain network level on the basis of temporally cor-
related fluctuations of blood oxygen level-dependent
(BOLD) signals in the low-frequency range of 0.01-0.1
Hz. Because resting-state fMRI reliably establishes distinct
corticocortical and corticosubcortical networks, it is ex-
tensively utilized to noninvasively assess abnormal func-
tional networks in brain disorders including migraine [10,
11]. Previous resting-state fMRI studies successfully iden-
tified functional dysconnectivity of the cortical and sub-
cortical regions within the nociceptive and somatosensory
pathways during the different phases of migraine headache
[6, 10-13]. Furthermore, these studies unveiled disrup-
tions of various functional networks such as default mode
network, dorsal attention network, central executive net-
work, and salience network in migraineurs [5, 6, 10, 12,
13]. Collectively, findings from fMRI studies point to a
hyperexcitable state as well as impairments in functional
networks and multisensory integration, leading to hyper-
sensitivity to sensory stimuli and pain processing abnor-
malities in migraine [5].

While most resting-state fMRI studies concentrated
on the spatial properties of temporally correlated low-
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frequency oscillations (LFOs), commonly referred to as
functional connectivity, it is also worthwhile to explore
local brain activity by quantifying the amplitude of LFOs.
Recently, a new analytic approach called ‘amplitude of
low-frequency fluctuation (ALFF)" has been developed
and validated to detect functional connectivity changes
in brain disorders [14]. ALFF estimates the total power
of BOLD signals in the low-frequency range, whereas
fractional ALFF (fALFF) stands for the relative contribu-
tion of LFOs by calculating the power within the low-
frequency range divided by the total power in the whole
detectable frequency range [15]. Relative to ALFF, fALFF
is less sensitive to physiological noise, and considered to
enhance the specificity and sensitivity in uncovering
local brain activity [15]. Notwithstanding the increased
recognition of LFOs in resting-state fMRI, the amplitude
and spatial properties of spontaneous LFOs were
assessed in only a few studies using ALFF or fALFF in
migraineurs, with incongruent results between the stud-
ies [16—20].

In this study, we examined the spatial distribution of
fALFF in a homogenous group of migraine patients
without aura compared with control subjects. We pre-
dicted that LFO activity would be disturbed in migrai-
neurs, resulting in an abnormal spontaneous brain
activity within the central pain matrix during the interic-
tal state. This abnormality in turn could be reflected in
the disease severity of the patients, as defined by their
clinical variables (e.g., migraine attack frequency, disease
duration).

Methods

Participants

Forty-nine migraine patients were prospectively enrolled
from the outpatient headache clinic of Korea University
Guro Hospital. Patients had to meet the following inclu-
sion criteria: (a) episodic migraine without aura accord-
ing to the International Classification for Headache
Disorders (ICHD-III beta); (b) 18—55 years of age; (c) no
abnormalities on physical and neurological examina-
tions; (d) no white matter hyperintensities on T2-
weighted and fluid attenuated inversion recovery
(FLAIR) images; and (e) free of migraine headache for at
least 72 h before and 24 h after the scanning. Only three
male patients were recruited during the study period.
Given a high disproportion of female to male patients
and the possible sex-specific differences in brain struc-
tures as well as functional connectivity in migraineurs
[21], only female patients were selected for analysis to
avert sex-linked bias. Patients were excluded if they had
a history of psychiatric disease, neurological disease
other than migraine, chronic systemic disease, or alcohol
abuse. Since functional networks can be potentially in-
fluenced by topiramate or valproate [22, 23], the
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frequently used preventive medications for migraine, pa-
tients who had a history of receiving any preventive
therapy for migraine were excluded as well. Demograph-
ics and the following clinical variables were acquired
through interviewing of the patients and review of med-
ical charts: age of migraine onset; disease duration; head-
ache intensity measured by the visual analogue scale
(VAS) score; laterality of headache (right, left, bilateral/
alternating); attack frequency (headache days registered
in a 3-month migraine diary prior to the MRI scanning);
and the Migraine Disability Assessment Scale (MIDAS).

Thirty-three control subjects free from neurological
and psychiatric diseases voluntarily participated in the
current study. All controls reported no or extremely few
spontaneous headaches, no family history of migraine,
and no history of chronic pain disorders and alcohol
abuse. The local ethics committee approved this study
and all subjects gave written informed consent to par-
ticipate in the study.

Magnetic resonance imaging acquisition

Participants were scanned on a 3 Tesla MRI scanner
with a standard 12-channel head coil (Siemens Trio, Er-
langen, Germany). For identification of structural abnor-
malities, axial FLAIR and T2-weighted images (4 mm
thickness), and oblique coronal FLAIR and T2-weighted
images (3 mm thickness) were acquired. For reference
purpose, a high-resolution T1-weighted image was ob-
tained using a 3D magnetization-prepared rapid
gradient-echo sequence (176 sagittal slices, TR/TE =
1780/2.34ms, FOV =256 mm? matrix = 256 x 256, iso-
tropic voxel dimensions =1 mm?®). For fALFF analysis,
245 volumes of 2D echo planar imaging were acquired
(38 axial slices in interleaved-ascending order, TR/TE =
2000/30 ms, voxel size =3.4 x 3.4 x 3.75mm?>). Partici-
pants were advised to rest motionlessly, think about
nothing in particular, keep their eyes closed, and stay
awake during the scanning. Participants with poor image
quality from excessive head motion or image distortion
due to various artifacts were excluded from the analysis.

Image processing and fALFF computation

MRI data processing and fALFF computation were car-
ried out using CONN-fMRI (version 19b, https://www.
nitrc.org/projects/conn/), a comprehensive toolbox for
resting-state fMRI analysis based on SPM12 (http://
www fil.ion.ucl.ac.uk/spm). Default preprocessing pipe-
line included: (a) eliminating the first five volumes for
steady-state magnetization equilibrium; (b) slice-timing
correction; (¢) head motion estimation and correction;
(d) direct segmentation of structural and functional im-
ages and spatial normalization into the Montreal Neuro-
logical Institute (MNI) space; (e) resampling to 2 mm?
isotropic voxels; and (f) smoothing with a 6 mm full-
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width half-maximum Gaussian kernel. Subject-specific
nuisance regressors including 6 parameters acquired
from rigid body head motion correction and their first
derivatives were removed using a component-based
noise correction strategy which uses principal compo-
nent analysis approach in order to effectively eliminate
physiological noises in resting-state fMRI data [24]. The
white matter and cerebrospinal fluid signals were
regressed out from the preprocessed functional images.
Global signal regression was not done to prevent poten-
tial superfluous anti-correlations. Images with a frame-
wise displacement value >0.5mm or global mean
intensity changes >3 standard deviations of mean were
defined as outliers (https://www.nitrc.org/projects/
artifact_detect/) and regressed out as well.

The preprocessed images were then temporally band-
pass filtered (0.01-0.08 Hz) to diminish low-frequency
drifts and physiological high-frequency cardiorespiratory
noise. This procedure was simultaneously performed
with nuisance regression in order to not reintroduce
nuisance-related variations into a band-pass filtered time
series. Computations of ALFF and fALFF were in ac-
cordance with previously illustrated methods by Zang
et al. [14] and Zou et al. [15], respectively. In brief, the
time series for a given voxel was first converted to the
frequency domain using a Fast Fourier Transform. The
square root of the power spectrum was computed and
then averaged across a predefined frequency interval
This averaged square root was defined as ALFF at the
given voxel, which is considered to reflect the absolute
intensity of spontaneous brain activity [14]. fALFF is de-
fined as the fraction of ALFF in a given frequency band
(0.01-0.08 Hz) to the ALFF over the entire frequency
range (0.01-0.25 Hz) detectable in the given signal [15].
The fALFF maps were finally z-transformed for
standardization.

Statistical analysis

The normalized fALFF maps were fed into the second-
level analysis to compare the amplitude of LFOs between
migraineurs and controls. Group-level statistical com-
parisons were assessed under the general linear model
framework using random-effects two-sample ¢-test with
age as a nuisance covariate to eliminate its contribution.
Statistical significance was set at a height threshold of
voxel-level p <0.001 in conjunction with an extent
threshold of cluster-level p < 0.05, corrected for multiple
comparisons using familywise error (FWE). Relation-
ships were explored between regional fALFF changes
and clinical variables indicative of disease status in
migraineurs. To this purpose, linear regression was con-
ducted between the fALFF values extracted from the sig-
nificant clusters (dependent variable) and disease
duration and age (independent variables). Regional
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fALFF values were also correlated with headache fre-
quency and MIDAS score by using Pearson correlation.
Bonferroni correction was further applied to correct for
multiple comparisons (p <0.017 [0.05/3]). Statistical
analyses were conducted using the Statistical Package
for Social Sciences (version 25.0; IBM, Armonk, NY).

Results

Clinical characteristics

Of the 82 participants initially enrolled, five patients and
two controls were excluded from the analysis due to ei-
ther structural abnormalities or poor image quality on
visual inspection of the MR images. Demographics and
clinical characteristic of 44 patients with episodic mi-
graine without aura (all females, mean age =36.2+ 8.8
years) and 31 controls (all females, mean age = 35.2 + 9.2
years) are presented in Table 1. Results were expressed
as mean * standard deviation unless otherwise stated.
Migraineurs and controls did not differ in age, education
years, and Mini-Mental State Examination score. Mean
age at migraine onset was 22.6 * 6.4 years, and mean dis-
ease duration was 13.6 £ 5.8 years. Maximal pain inten-
sity measured by VAS score was scale was 7.5 + 1.7, and
mean MIDAS score was 16.5 +7.8. Laterality of head-
ache was reported as right-sided predominance in 16 pa-
tients, left-sided in 14, and bilateral/alternating sides in
14. Attack frequency based on the headache days regis-
tered in a 3-month migraine diary ranged from 3 to 24
(mean = 10.2 + 5.2). Rescue medications that the patients
habitually used for their migraine headaches consisted of
triptans in 21 patients, ergotamine/caffeine tablets in 7,
non-steroidal anti-infammatory drugs in 5, opioids in 2,
and combination of above-mentioned drugs in 9.

fALFF alterations

Compared to controls, migraineurs exhibited a signifi-
cant increase of fALFF in the left ventral posteromedial
(VPM) thalamus (MNI coordinate of local maxima =
- 18/-20/4, FWE-corrected p =0.002, cluster volume =

Page 4 of 9

1000 mm?>, ¢ =5.04, z=4.66), right VPM thalamus (MNI
coordinate of local maxima =22/-20/4, FWE-corrected
p<0.001, cluster volume =752mm? ¢=578, z=523),
and brainstem (MNI coordinate of local maxima = 8/- 26/
- 40, FWE-corrected p<0.001, cluster volume = 3664
mm?, £ =5.88, z=5.30) (Fig. 1). There was no region of de-
creased fALFF in migraineurs compared to controls. Lon-
ger disease duration in vyears of migraineurs was
associated with an increased fALFF of left thalamic cluster
(B =0.613, t =3.233, p =0.002), right thalamic cluster
(B =0.662, t =3.486, p =0.001), and brainstem cluster
(B =0.516, t =2.568, p =0.014) (Fig. 2). Attack frequency
registered in a 3-month migraine diary or MIDAS score
did not significantly correlate with fALFF of the brainstem
and bilateral thalamic clusters.

Discussion

We attempted to determine alterations in intrinsic brain
activity and to explore their relationships with clinical
parameters reflecting disease severity in a homogenous
cohort of migraine patients without aura using fALFF
method that took into consideration the spatial distribu-
tion and amplitude of spontaneous LFOs. The main re-
sults are fALFF increases in bilateral VPM thalamus and
brainstem regions incorporating rostral ventromedial
medulla (RVM) and trigeminocervical complex (TCC) in
migraineurs compared with controls. Longer disease
duration was associated with an increased fALFF of the
brainstem and bilateral VPM thalamus in migraineurs.
Our finding of aberrant LFOs in the trigeminothalamic
pathway of patients in the interictal state of migraine
provides additional evidence to our understanding of the
pathophysiological changes underlying migraine without
aura.

ALFF/fALFF alterations in migraine

ALFF/fALFF proved to be a reliable and reproducible
data-driven approach that measures the amplitude of
LFOs reflecting spontaneous neuronal activity at rest.

Table 1 Demographics and clinical characteristics for migraineurs and controls

Migraineurs (n =44)

Controls (n =31) p-value (two-tailed)

Gender (female:male) 44.0

Age (years) 36.2+ 88 (range 18-54)
Education years 143+2.1

MMSE score 289+09

Age of migraine onset (years) 226+ 64 (range 13-34)
13.6 + 5.8 (range 3-28)
10.2 +5.2 (range 3-24)
75+ 1.7 (range 4-10)

16.5+ 7.8 (range 4-33)

Duration of migraine (years)
3-month headache frequency
Headache intensity (VAS score)
MIDAS score

310

352492 (range 18-55) 0.640
145+16 0632
201+1.1 0307

Numerical data are presented as mean + standard deviation. Group comparisons were made using two-sample t-test
Abbreviations: MIDAS Migraine Disability Assessment Scale, MMSE Mini-Mental State Examination, VAS visual analogue scale
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Brainstem

Control Migraineur

patients (two-sample t-test, all p <0.001) (B)

Left thalamus
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Fig. 1 Brain regions of significant fALFF increases in migraine patients without aura compared to matched controls are rendered on the axial
template images of the standard MNI brain (A). The left side of each MR image is the left side of the brain. The color bar indicates t-statistics.
Mean (bars) and standard deviation (whiskers) for the fALFF of the brainstem and bilateral thalamic clusters in 31 controls and 44 migraine

Right thalamus

Migraineur Control Migraineur

The strengths of ALFF/fALFF method lie in the feasibil-
ity and simplicity of the analysis, remarkably high tem-
poral stability [25], and excellent long-term inter-session
test-retest reliability [26], thereby providing a robust
marker of inter-individual and group differences in
spontaneous LFOs [15, 27]. With respect to subsets of
frequency bands, fALFF of slow-5 (0.01-0.027 Hz) and
slow-4 (0.027-0.073 Hz) bands primarily reflect neuronal
activity of the grey matter, while slow-4 band fALFF was
higher throughout the thalamus, basal ganglia, and sen-
sorimotor regions compared to slow-5 band fALFF.

Slow-3 (0.073—-0.198 Hz) and slow-2 (0.198-0.250 Hz)
fALFF are mainly associated with white matter signal
and physiological noise (respiratory and aliased cardiac
signals) [27]. There is an ongoing debate as to whether
resting-state fMRI could actually capture neuronal activ-
ity of the white matter, and thus, fMRI activation within
the white matter remains contentious and warrants fur-
ther investigation [28]. Furthermore, because ALFF is li-
able to be more vulnerable to pulsatile artifacts in the
vicinity of blood vessels and ventricles, fALFF analysis is
more effective than ALFF in detecting spontaneous

Left thalamus Right thalamus Brainstem
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Fig. 2 Scatter plot graphs of linear regression analysis showing that longer disease duration is significantly associated with an increased fALFF of
bilateral thalamic and brainstem clusters (p < 0.017)
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LFOs in the periventricular and subcortical regions [27].
It seems therefore reasonable to adopt fALFF analysis
using the low-frequency range of 0.01-0.08 Hz in our
migraine patients in which LFO alteration would be ex-
pected in the subcortical and cortical grey matter such
as thalamus and somatosensory cortex.

Alteration of fALFF reflects dysfunction of the local
brain activity: increased fALFF found in migraineurs
may represent an excitatory or facilitating process such
as enhanced thalamocortical oscillations [17], whereas
reduced fALFF can be interpreted as a functional inhib-
ition of the brain regions and networks including default
mode network, sensorimotor network, and dorsal atten-
tion network. There are, to our knowledge, 5 publicly
available studies that explored ALFF/fALFF changes in
migraineurs; however, their main results are conflicting
[16-20]. The first study found ALFF decreases in the
prefrontal and rostral anterior cingulate cortices, and
ALFF increases in the right thalamus, suggesting interic-
tal dysfunctional interaction between nociceptive pro-
cessing and descending pain modulatory pathways in
migraine without aura [16]. Another study investigating
the same paradigm identified a significant reduction in
ALFF in the primary somatosensory and premotor corti-
ces in migraine without aura [20]. Significant ALFF/
fALFF changes were also found in multiple brain regions
linked to pain- and cognition-related functional net-
works in migraineurs compared to controls [18]. In a
longitudinally designed study, migraine patients without
aura had ALFF increases in the posterior insula and pu-
tamen/caudate, and ALFF reductions in the brainstem
region of RVM/TCC [19]. Interestingly, reduced ALFF
in the RVM/TCC in migraineurs was normalized follow-
ing a 4-week’s acupuncture treatment, implying that im-
pairment of the ascending nociceptive pathway and
descending pain modulatory system in the brainstem
might be implicated in neural pathophysiology of mi-
graine [19]. In a seminal work by Hodkinson et al. [17],
migraineurs exhibited an increase in fALFF of slow-5/4
bands (0.010-0.073 Hz) principally in the midline grey
matter structures including thalamus, ventral dienceph-
alon/hypothalamus, supplementary motor area, and an-
terior cingulate cortex, and a decrease in fALFF in
bilateral prefrontal cortices. The study demonstrated the
presence of aberrant LFOs in the thalamocortical net-
work of migraine patients between headache attacks, im-
plicating an abnormal interictal state of thalamocortical
dysrhythmia in the pathogenetic mechanism of migraine
[17]. Our findings of aberrant LFOs in the thalamus and
brainstem nuclei in migraineurs are in line with those of
aforementioned studies [16, 17, 19], although there is
some divergence between the studies in whether the
change is related with a decrease or an increase in
ALFF/fALFF and in which thalamic nuclei are affected.
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However, we failed to replicate previous findings of
fALFF changes in cortical regions involved in pain net-
works as well as affective and cognitive domains of pain
[16-20]. The inconsistencies cannot be appropriately ex-
plained but might be partly attributed to genetic hetero-
geneity, different sample size, and methodological
heterogeneity, particularly in image processing proced-
ure, analysis software, and statistical inference. Con-
founding factors and clinical complexities within the
patient population such as different migraine subgroups
and sex difference, could also account for the inconsist-
ent results between the studies.

Brainstem nuclei

Recent advances in experimental and human functional
imaging studies conceptualize migraine as a disorder of
nociceptive circuits and multisensory network gain and
plasticity [2, 29]. Specifically, dysfunction of the di-
encephalic and brainstem nuclei that modulate the acti-
vation of the trigeminovascular system, and their
connections to other key centers of central pain matrix
may lead to the predisposition and generation of head-
ache and other concomitant symptoms of migraine [2, 3,
29]. In our study, migraineurs had a significant increase
in fALFF in the brainstem encompassing RVM and
TCC, well-known structures involved in nociceptive pro-
cessing and migraine pathophysiology. RVM is the pri-
mary output structure mediating descending pain
modulatory system [30]. ON and OFF cells within the
RVM are activated on the onset and offset of noxious
stimulation, and are considered to facilitate and suppress
nociceptive transmission, respectively [31]. Increased
ON cell and reduced OFF cell activities were observed
in pain models including migraine [32, 33]. The first
central relay for craniofacial pain is the TCC, which pro-
ject directly or indirectly to the brain structures involved
in the sensory/discriminative and affective/motivational
aspects of pain, as well as to the structures involved in
the descending pain modulation and autonomic outflow
[2, 29, 34]. Physiological and tracing studies have pro-
posed that activation of TCC and its connections (e.g.,
locus coeruleus, periaqueductal grey, hypothalamus,
thalamus) could not only contribute to the perception of
migraine headache, but also to affective, cognitive, and
autonomic symptoms accompanied by migraine episode
[2, 29]. Positron emission tomography studies unveiled
neuronal activation in the brainstem, especially the
dorsolateral pons, during spontaneous migraine attack
[35, 36] and induced migraine [37]. Similarly, event-
related fMRI studies disclosed BOLD signal increases in
the brainstem encompassing the trigeminal nucleus or
dorsal pons during migraine attack in response to noci-
ceptive stimulation, highlighting the importance of TCC
abnormality in the predisposition and generation of
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migraine headache [38-40]. Both macrostructural (e.g.,
volume reduction, shape deformation) and microstruc-
tural (e.g., increased mean diffusivity) abnormalities of
the brainstem including trigeminal nucleus, dorsolateral
pons, and periaqueductal grey were demonstrated in
migraineurs in morphometric MRI and diffusion tensor
imaging studies, respectively [41, 42]. Our finding of ab-
errant LFOs in the brainstem including RVM and TCC
in migraineurs is in parallel with those of aforemen-
tioned studies, supporting the concept that the disturbed
homeostasis of the trigeminovascular nociceptive path-
way in the brainstem has a crucial role in the neurobio-
logical mechanism of this disorder [2, 3, 29].

Ventral posteromedial thalamic nucleus

The thalamus is the key center for conveying ascend-
ing nociceptive information from the peripheral ner-
vous system to the cortex. Thalamic abnormalities in
migraine has been well established in numerous ani-
mal studies and neurophysiological as well as human
imaging studies such as volumetric MRI, diffusion
tensor imaging, fMRI, and MR spectroscopy [43]. Par-
ticularly, trigeminovascular neurons send glutamater-
gic processes to the VPM thalamic nucleus, and VPM
neurons are considered to principally relay sensory
nociceptive information to the higher cortical pain
processing regions of primary and secondary somato-
sensory cortices [2, 29, 44]. Involvement of VPM nu-
cleus was supported by a few MRI studies showing
structural and functional changes of the VPM nucleus
in migraineurs. Migraineurs were found to have lower
fractional anisotropy and shorter T1 relaxation time
in the thalamic region corresponding to the VPM nu-
cleus, indicating microstructural abnormality of VPM
nucleus in migraine [8, 45]. Aberrant thalamocortical
connectivity was identified between thalamic seed in
close proximity to the VPM nucleus and pain modu-
lating as well as pain encoding regions during spon-
taneous migraine attacks compared to interictal
period [35].

The role of VPM nucleus in migraine pathophysiology
has been emphasized in electrophysiological studies that
evaluated the influence of migraine medications on thal-
amic VPM neurons in rats [46—49]. More specifically,
acute medications such as triptans [46] and calcitonin
gene-related peptide receptor antagonists [49], and
preventive medications such as valproate [47] and topir-
amate [48] are able to inhibit nociceptive trigeminothala-
mic inputs in the VPM, strongly suggesting that VPM
nucleus has a pivotal role in the modulation of pain
transmission in migraine and could be a promising
pharmacological target for migraine medications. To-
gether, our finding of abnormal LFOs in the region of
thalamic VPM nucleus in migraineurs accords with
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previous studies, further supporting the notions that
VPM nucleus is primarily involved in migraine-relevant
pain network, and its dysfunction may contribute to the
generation and facilitation of migraine headache.

Limitations and future perspectives

Our study has several inherent limitations that should
be addressed. First, the sample sizes for both groups
were small, which potentially limits the statistical robust-
ness and reproducibility and reliability of the results [50,
51]. Second, since our patients were recruited from a
tertiary referral hospital, they may not represent the gen-
eral migraine population. In addition, only female mi-
graine patients without aura were selected for statistical
analysis. Given the likely differences in functional con-
nectivity between female and male patients, and between
migraine patients with aura and those without [21], our
results could not be generalized to the entire patient
population and should be confined to female migraine
patients without aura. Third, the cross-sectional design
of our study limits interpretation of the results regarding
the directionality and causal relationship. Based on the
compelling evidence of trigeminothalamic involvement
in migraine, it is plausible that abnormal trigeminothala-
mic LFOs indicates an inherent pathology causing mi-
graine headache. Conversely, given our finding of
increasing fALFF in proportion to disease duration, we
speculate that abnormal trigeminothalamic LFOs might
be the consequence of repeated headaches or long-
standing disease burden, and that LFO alteration could
be used as a surrogate marker for the disease progres-
sion in migraine. Further prospective longitudinal stud-
ies would provide a clue to the disentanglement of
causal relationships between spontaneous brain activity
and disease progression. Fourth, our fMRI data utilized
the relatively low sampling rate (TR = 2 s) without simul-
taneous measurement of cardiorespiratory activity that
might generate artifactual signals in the low-frequency
band; therefore, the potential influence of this physio-
logical process on BOLD signal cannot be entirely elimi-
nated [52]. However, a previous work demonstrated that
regional differences in fALFF were not remarkably influ-
enced by breath-holding process that strenuously manip-
ulates the vascular contributions to the BOLD signal
[27]. Moreover, this drawback is possibly mitigated by
the fact that we analyzed fALFF instead of ALFF, which
has proved to be more efficient than ALFF in capturing
spontaneous LFOs of the subcortical and periventricular
regions [27]. Last, our patients have taken a variety of
prescribed antimigraine drugs for many years, which
may compromise the results. The specific effects of dif-
ferent antimigraine drugs on intrinsic brain activity
should be comprehended and applied to the future
resting-state fMRI research in migraine.
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Conclusion

Converging evidence suggest that the sensory nervous
system plays a critical role in the generation and predis-
position of migraine headache. Herein, we demonstrated
abnormal LFOs in the brainstem including RVM/TCC
and thalamic VPM nucleus, implicating trigeminothala-
mic network oscillations in the pathophysiology under-
lying migraine without aura. Our results suggest that
enhanced LFO activity may underpin the presence of
interictal trigeminothalamic dysrhythmia that could con-
tribute to the impairments of pain transmission and
modulation in migraine. Given the finding of increasing
fALFF in relation to increasing disease duration, the
observed trigeminothalamic dysrhythmia may indicate
either an inherent pathology leading to migraine head-
aches or a consequence of repeated attacks on the brain.
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