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Recognition of freezing of gait in Parkinson’s 
disease based on combined wearable sensors
Kang Ren1,2*, Zhonglue Chen2, Yun Ling2 and Jin Zhao3* 

Abstract 

Freezing of gait is a common gait disorder among patients with advanced Parkinson’s disease and is associated with 
falls. This paper designed the relevant experimental procedures to obtain FoG signals from PD patients. Accelerom-
eters, gyroscopes, and force sensing resistor sensors were placed on the lower body of patients. On this basis, the 
research on the optimal feature extraction method, sensor configuration, and feature quantity selection in the FoG 
detection process is carried out. Thirteen typical features consisting of time domain, frequency domain and statistical 
features were extracted from the sensor signals. Firstly, we used the analysis of variance (ANOVA) to select features 
through comparing the effectiveness of two feature selection methods. Secondly, we evaluated the detection effects 
with different combinations of sensors to get the best sensors configuration. Finally, we selected the optimal features 
to construct FoG recognition model based on random forest. After comprehensive consideration of factors such as 
detection performance, cost, and actual deployment requirements, the 35 features obtained from the left shank gyro 
and accelerometer, and 78.39% sensitivity, 91.66% specificity, 88.09% accuracy, 77.58% precision and 77.98% f-score 
were achieved. This objective FoG recognition method has high recognition accuracy, which will be helpful for early 
FoG symptoms screening and treatment.
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Introduction
Parkinson’s disease (PD) is a common neurodegenerative 
disease in middle-aged and elders. As of 2018, the global 
prevalence of PD was about 5.8 million, of which more 
than 50% patients were in China, and the number of new 
patients reached more than 100,000 each year [1]. Freez-
ing of gait (FoG) is the most common and most disa-
bling obstructive gait in the clinical manifestations of PD 
patients. FoG is mainly manifested in the transient block 
of motion: the patient is hesitant at the beginning, unable 
to walk or feels that his feet are stuck on the floor when 

walking, and is difficult to lift and step. The symptom 
usually lasts for several seconds, but occasionally can 
last as long as 30s. It often occurs when the patient starts 
walking, turns, and passes obstacles [2].

A survey of 6620 PD patients showed that 47% indi-
cated that FoG often occurred, and 28% expressed that 
they experienced FoG every day [3]. FoG can easily lead 
to falls, fracture, disability and even death, which can 
seriously affect the quality of life of patients [4]. At pre-
sent, the feasibility of FOG event detection has been 
investigated in many studies utilizing wearable sensors, 
such as force-sensitive shoe insoles [5], video cameras 
with 3D markers [6], and inertial sensors [7–11]. Among 
them, the inertial sensors have been intensively studied 
because of their low cost and compact size that enables 
easy wearing. Compared with vision-based methods, 
inertial sensors can monitor freely and are not restricted 
by tight spaces. In addition, studies have shown that the 
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introduction of Rhythmic Auditory Stimulation (RAS) 
and visual cues can be used as auxiliary tools for FoG 
intervention [12, 13]. However, the drugs and surgical 
treatment are usually ineffective [14]. Therefore, early 
identification and evaluation of FoG is very important, 
and how to identify and screen FoG as early as possible in 
PD patient management is of great clinical significance. 
For the above reasons, it is necessary to develop wearable 
devices that can detect FoG.

Related work
Recently, the machine learning algorithms are widely 
used to identify FoG. Mazilu et  al. [9] deployed the 
online FoG detection and RAS intervention system to 
smartphones by using AdaBoost with C4.5algorithm on 
a public dataset collected from the 3D acceleration sen-
sors attached to the shank, the thigh and to the lower 
back of 10 PD patients when they performed three varied 
walking tasks, which obtained more than 95% sensitivity 
and specificity with 10-fold cross-validation. Rodriguez-
Martin et al. [8] used SVM to detect FoG through hand-
crafted features calculated by a single waist-worn triaxial 
accelerometer from 21 PD patients when they perform 
the activities of daily living (ADLs), which achieved 88.1% 
sensitivity and 80.1% specificity through leave-one-sub-
ject-out (LOSO) validation.

In addition, deep learning algorithms have also been 
widely used in FoG detection. Ali Saad et al. [9] extracted 
the best features of different sensors fixed on the shin and 
the foot, and trained the Gaussian neural network from 
simulated dataset for classification to achieve an accu-
racy of 87% on independent test of 5 PD patients. Sig-
cha L et al. [10] used FFT transform of raw acceleration 
signals and combined long short-term memory (LSTM) 
to recognize FoG, which the signals were collected by a 
wearable inertial measurement unit (IMU) located at 
the waist when they did scripted ADLs. Their method 
achieved a significant improvement in the performance 
of FOG detection (leave-one-out validation: 87.1% sen-
sitivity, 87.1% specificity) without increasing the length 
of the analysis window. Bohan Shil [11] gathered the 
data from three IMU sensors positioned at the ankles 
and spine of 67 PD patients when they performed TUG. 
They converted the recorded time-series sensor data into 
continuous wavelet transform scalograms and trained a 
Convolutional Neural Network to detect the freezing epi-
sodes, achieving an accuracy of 89.2% and a geometric 
mean (square root of sensitivity and specificity) of 88.8% 
on the independent test set.

A reliable FOG evaluation is still difficult, especially in 
daily life. More basic science and engineering research 
is therefore desired to improve the reliability of freezing 
evaluation, so multimodal FoG recognition system have 

been proposed. Luca Mesin et al. [15] found that the iner-
tial sensors positioned on the lower limb are generally the 
most significant in recognizing FOG and they achieved 
85% accuracy in the LOSO validation. Ying Wang et  al. 
[16] used brain activity from EEG and motion data from 
accelerometers to detect FOG and found that the mul-
timodal model performed better than the single-modal 
models. Another study [17] show that they obtained a 
sensitivity of 97%+/− 3%, a specificity of 96%+/− 7% 
through the LOSO validation when they used the multi-
modal features.

Although the multimodal FoG recognition system may 
be effective, this system is complex to wear and is lim-
ited to experiments. Considering the cost and conveni-
ence of use, a trade-off must be made between installing 
the least number of sensors and collecting the most use-
ful information. To this end, this paper designs related 
experiments to evaluate the FoG detection performance 
of different sensor configurations, compare the effective-
ness of the two feature selection methods, develop the 
optimal combination of sensor configurations and select 
the optimal number of features in order to achieve the 
most effective system design.

Materials and methods
Materials
In materials, we introduce the dataset and sensors used 
in this study and describe the gait test.

Dataset
In order to study the FoG of PD patients, the inclusion 
criteria are: (1) the study participants diagnosed with 
PD according to the Movement Disorder Society (MDS) 
diagnostic criteria (2) the participants determined with 
FoG according to clinical manifestation and FoG ques-
tionnaire; (3) the participants in the “ON” state of medi-
cation; (4) the participants that can walk for more than 
20 m independently.

The exclusion criteria are: the participants had sec-
ondary PD causes, such as inflammatory, drug-induced, 
vascular, toxin-induced, etc., or participants with other 
neurodegenerative diseases, such as progressive supranu-
clear palsy or multiple system atrophy (MSA) and other 
Parkinson-plus syndromes.

This study recruited 12 Parkinson’s disease subjects 
who experienced FoG every day, including 10 males and 
2 females. All subjects had a history of taking anti-PD 
drugs and had no cognitive impairment. The character-
istics of the patients are presented in Table 1. This study 
was approved by the ethics committee of Ruijin Hospital, 
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affiliated with Shanghai Jiaotong University School of 
Medicine.

Test procedures
Before the gait test, the inertial sensor (BMX055) was 
worn at the subject’s waist, thighs (above the knees), 
shanks (above the ankles), and feet (outer sides of the 
shoes). Six thin-film force sensor resistors (FSR) were 
integrated into the medial and lateral metatarsal region 
and heel region of the left and right insoles, respectively. 
The wearing locations of the above-mentioned sensors 
were shown in Fig. 1.

Subjects were asked to complete two specific gait tests 
to induce the occurrence of FoG episode: (1) random gait 
test; (2) Timed Up and Go test (TUG) [18]:the subject 
stood up from a armchair, walked straight forward to the 
turn line with yellow tape on it, turned 180 degrees and 
then walked back to the seat. The process was repeated 

Table 1  Characteristics of the included patients

a sd standard deviation
b MDS-UPDRS Movement Disorders Society Unified Parkinson’s Disease Rating 
Scale
c FOGQ Freezing of Gait Questionnaire

Value

Number (female %) 12 (16.7%)

Age, year, (mean ± sda) 66.75 ± 4.95

Age of Onset, years, (mean ± sd) 26.90 ± 12.23

Hoehn-Yahr Stage, N(%) (2.67 ± 0.51)

2
2.5
3
4

2 (16.7%)
6 (50%)
3 (25%)
1 (8.3%)

MDS-UPDRSb-III score, (mean ± sd) 35.00 ± 10.02

FOGQc score, (mean ± sd) 13.17 ± 3.16

Fig. 1  Sensors wearing location
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more than 3 times for each subject. To avoid fatigue, sub-
jects were allowed to take enough rest between tests.

The acceleration sensitivity is 4096 LSB/g (range 
-8 g ~ + 8 g). The sensitivity of the gyroscope is 16.4LSB/
(dps) (range -2000dps ~ +2000dps). The data collected by 
the sensor is wirelessly transmitted to the PC software for 
collection and storage at a sampling frequency of 100 Hz. 
Bluetooth 4.0 protocol was adopted for wireless data 
transmission, and the maximum connection distance 
can reach 60 to 100 m. The researchers stood 3 m behind 
the subjects and recorded videos of the subjects’ move-
ment. During synchronization, the PC software sent the 
timestamp to each sensor. After each sensor received 
the timestamp the PC software can synchronized the 
time with all sensors. When recording a video, we would 
ensure that the timestamp on the PC software was cap-
tured. In this way, time synchronization between video, 
PC and sensor can be achieved. After the test, the profes-
sional physicians watched the video records and marked 
the FoG episodes. The start of FoG episode was defined 
when the patient was instructed to initiate walking but 
had not yet performed any effective step forward at any 
point in time. The end of an episode was defined as the 
time when an effective step had been performed with a 
relatively normal length and swing, and the step also had 
to be followed by continuous normal walk [19].

Methods
In methods, we present our modeling procedure for 
offline detection of FoG episodes (Fig. 2). After data pre-
processing, the signals acquired by sensors were divided 
into several window data by windowing and then calcu-
lated features to obtain the sample set. Due to the sud-
denness of FoG, the sample is imbalanced. Therefore, in 
order to avoid the negative impact of imbalanced posi-
tive and negative sample ratios on the performance of 
the classifier, we performed random resampling method 

to rebalance the class distribution. Since Random under 
sampling deletes examples from the majority class and 
can result in losing information invaluable to a model 
for a small dataset, so we used Synthetic Minority Over-
sampling Technique (SMOTE) [20] to balance the train-
ing sample set. Finally, the balanced sample set was fed 
to Random Forest [21] Classifier to obtain the classifica-
tion model. Mazilu et al. [22] compared several ML algo-
rithms and reported that the best results were with the 
random forest algorithm; Rubén San-Segundo et al. [23] 
proved that the performance of random forest algorithm 
is close to that of the deep learning model. Therefore, we 
selected the random forest classifier in this study. We 
used LOSO cross-validation [24] method to evaluate the 
classifier, which divided the dataset into 12 folds accord-
ing to the patients and the data of one patient will not 
appear in the training set and validation set in each fold, 
and the evaluation indicators are sensitivity, specificity, 
and accuracy.

Data preprocessing
In the process of data collection, due to the impact of 
obstacles, the signal transmitted between the sensor and 
PC will be degraded and interrupted. When the connec-
tion was interrupted, we used the internal storage of the 
sensor to ensure the integrity of most data with only a 
small part temporarily missing. After collecting the sen-
sor data, we performed data preprocessing. First, in order 
to fill in these missing values, linear interpolation was 
used. Then, the signal was filtered through a 26 order of 
equiripple FIR filter with the frequency range between 
0.5 and 10 Hz to eliminate baseline drift.

Windowing
The sensor data were divided into several window data by 
windowing for feature extraction. Specifically, when the 

Fig. 2  Modeling procedure
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sampling frequency is f (Hz), the window length is m sec-
onds, and the step length is t seconds, after dividing the 
time window for l point collected by a certain sensor sig-
nal in a period, (l / f – m) / t + 1.

Window data can be obtained. The windowing process 
is shown in Fig. 3. Previous studies showed that a window 
size of 2 s can yield a good result [25] and we think that 
2 s is long enough to contain a step information. There-
fore, the sliding time window is set to 2 s and the step 

length is set to 0.5 s. Since the observation time point of 
the subject’s FoG lags the actual FoG time point, so it is 
defined that the labeled result corresponding to the start 
time point of each window.

Feature extraction
With the aim to obtain significant information from each 
window, some typical features (The description of each 
feature are shown in Table  2.) consist of time domain, 

Fig. 3  Windowing

Table 2  Features

a FI Freezing index

Number Feature Description

1 FI a Ratio of [3, 8] Hz power (freezing zone) to [0.5,3] Hz power (motion zone)

2 Energy The sum of squared amplitudes of signal after discrete Fourier transform

3 Sum Power The sum power of the freezing zone and the motion zone

4 Mean The mean value of the signal

5 Absolute Mean Average of the absolute value of the signal

6 Zero-crossing Rate The number of times the signal passes through the zero point

7 Standard Deviation The mean square root of the sum of squares of deviation from mean

8 Range The difference between the maximum and minimum value of the signal

9 Root Mean Square The square root of the average of the squares of all values

10 Maximum Maximum value of signal

11 Minimum Minimum value of signal

12 Principal Direction Eigenvalue Eigenvalue of covariance matrix

13 Entropy Information uncertainty
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frequency domain features and statistical features com-
monly used for FoG recognition were extracted from the 
sensor signal data. The above features can reflect the sub-
jects’ movement information to some extent. For exam-
ple, Moore et  al. [26] proposed that the freezing index 
(FI) can detect FoG episodes according to changes in 
inertial signal power spectrum. And Mean value of each 
accelerometer axis measurements throughout the win-
dow gives the orientation of the inertial system related 
to gravity in absence of movement [8]. Standard devia-
tion of each axis indicates the amount of movement per-
formed in a window time.

We used the signals of the inertial sensors (triaxial 
accelerometer and triaxial gyroscope) placed in 7 parts 
of the body and 6 signals of plantar pressure to cal-
culate the above thirteen typical features. Therefore, 
(7*2*3*13 + 6*13) 624-dimensional feature vectors can be 
obtained. Since different units of each feature can affect 
subsequent feature importance evaluation, we use Min-
max normalization method for data normalization. For 
every feature, the minimum value of that feature gets 
transformed into a 0, the maximum value gets trans-
formed into a 1, and every other value gets transformed 
into a decimal between 0 and 1.

Feature selection
The above high-dimensional feature space would reduce 
classification accuracy and high computational cost. In 
this paper, we used two filtering feature selection meth-
ods to select features on the training set – mutual infor-
mation (MI) [27] and analysis of variance (ANOVA) [28].
MI and ANOVA are typical filter feature selection meth-
ods that has low complexity, so it can quickly remove a 
large number of irrelevant features. Therefore, it is very 
suitable as a feature pre-filter. Yuqian Zhang [29] used 
these two feature selection methods to select features and 
then fed them to machine learning model, achieving an 
excellent FoG prediction result. Therefore, the impor-
tance of features was evaluated through these two feature 
selection methods and the effects of the two methods 
were compared as well.

In information theory, mutual information can meas-
ure the statistical dependence between two random vari-
ables, so it can be used to evaluate the relative utility of 
each feature for classification.

Theorem 1.
The Shannon entropy [30] of the discrete random vari-

able W is defined as:

(1)H(W ) = −
∑

X

p(w) log p(w)

Then the mutual information [30] of the class label var-
iable Y and the gait feature variable X can be expressed 
as:

In the above formula, H(Y) is a measure of the uncer-
tainty about Y, and H(Y|X) is the uncertainty in Y when 
determining the observation quantity X. It can be seen 
that I (X, Y) is to reduce the uncertainty of the class label 
Y through the knowledge obtained at the gait feature X. 
Therefore, I (X, Y) can represent the amount of informa-
tion of the class label Y contained in the gait feature X. A 
higher mutual information score indicates that the more 
classification information the feature contains, and the 
better the classification effect is.

In statistics, One-Way Analysis of Variance is a com-
mon method to study the relationship between sampling 
data and can be used to test the significant difference 
between class.

Theorem 2.
It is stipulated that represents a sample of the gait fea-

ture Xk ∈ {X1, X2, …, XM}, where i = 1, 2, …, M is the class 
number, and j = 1, 2, …, N represents the sample number 
of the i-th class. It is established in the null hypothesis that 
the class means of the gait feature Xk ∈ {X1, X2, …, XM} are 
equal, i.e., H0 : µ1 = µ1 = . . . µM ,µi = (1/N )

N
j=1x

i
j . 

The hypothetical result could be quantified by F test [31] 
that rejects H0 at α level as:

In the above formula, M − 1 and 
∑M

i=1N −M represent 
degrees of freedom, Fα

(

M − 1,
∑M

i=1N −M
)

 is the 
(100α) th percentile of the F distribution. 
SSb =

∑M
i=1N

(

xi − x
)2 represents the sum of variances 

between classes, SSw =
∑M

i=1

∑N
j=1

(

xi − x
)2 is the sum 

of variances within classes, xi and x are the sample means 
of the classes and the population, respectively. F indicates 
the extent to which the sample of feature X is derived 
from the distribution of the same mean, and it can be 
determined whether there is a difference between the 
classes according to the feature values of different classes. 
The larger the F value, the greater the difference in the 
mean of features in different classes, thus providing use-
ful information for feature selection.

(2)

I(X ,Y )

= H(Y )−H(Y |X)
= −

∑

X

p(y) log p(y)+
∑

y∈Y

∑

x∈X

p
(

y|x
)

log p
(

y|x
)

(3)

F =
SSb/(M − 1)

SSw/
(

∑M
i=1N −M

) > Fα

(

M − 1,
∑M

i=1
N −M

)
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Sample balance
We used SMOTE algorithm [20] with 5 neighbors to 
increase the minority samples, so that the ratio of posi-
tive and negative samples after balance is 1.

The SMOTE algorithm is described as fol-
lows: for any one sample xi in the class sample 
X = {x1, x2, x3, …, xi, …, xn}, its Euclidean distance 
from other samples is calculated, and k neighboring 
{xi1, xi2, xi3, …, xij, …, xik} of xi are selected. According to 
the sampling rate m, m (m ≤ k)samples are randomly 
selected from {xi1, xi2, xi3, …, xij, …, xik}, and new data xij1 is 
synthesized by linear interpolation for each sample,

In the above formula, rand(0, 1) is a random number 
between 0 and 1. Repeat the above process for each sam-
ple in X to synthesize data that is m times the original 
sample size.

Modeling and verification
In this paper, the unified use of random forest algorithm 
was selected to classify FoG and non-FoG, and the results 
of different experimental designs were compared. We use 
grid search and LOSO methods to select the optimal esti-
mator 10 to build a random forest model, and each tree 
was constructed with the maximum depth, so there was 
no need of pruning.

We evaluated the performance of the model using sen-
sitivity, specificity, accuracy, precision and f-score. The 
following indicators were defined:

TP: Gait was correctly recognized as FoG;
TN: Gait was correctly recognized as non-FoG;
FP: Gait was incorrectly recognized as FoG;
FN: Gait was incorrectly recognized as non-FoG;
The calculation formulas for sensitivity, specificity, 

accuracy, precision and f-score are as follows:

(4)xij1 = xi + rand(0, 1)×
(

xij − xi
)

Sensitivity (Recall): Sens. = TP/(TP + FN);
Specificity: Spec. = TN/(TN + FP);
Accuracy: Acc. = (TP + TN)/(TP + FN + FP + TN);
Precision: prec. = TP/(TP + FN);
F-score: 2*(Sensitivity *Precision)/(Sensitivity 

+Precision).

Results
In order to get the most effective system design, we first 
selected the optimal feature selection method, then we 
chose the best sensor combination. Finally, according to 
the optimal feature selection method and sensor con-
figuration, we feed the best features to the random forest 
model.

Data research statistics
This test recorded the data of 2 hours and 31 minutes in 
total. Ten out of 12 subjects showed FoG during the test, 
and 2 subjects behaved normally throughout the process. 
Professional physicians marked the total of 276 FoG epi-
sodes from the video record. The number of FoG episodes 
for each subject ranged between 0 and 27 (mean = 14.7, 
standard deviation = 9.3). The duration of FoG episodes 
ranged from 0.9 to 76.9 seconds (mean = 8.1 s, standard 
deviation = 9.3 s). More than 50% of FoG episodes lasted 
less than 6 seconds, whereas the majority (93.5%) lasted 
less than 20 seconds. The distribution of FoG durations 
was shown in Fig. 4.

Feature selection method comparison
Mutual information and ANOVA were used to calculate 
feature selection scores on 624-dimensional features, and 
the importance was ranked, followed by testing the clas-
sification effect of the features ranking top 5, top 10, top 
15, ..., top 200 in importance under two methods respec-
tively. The test results are shown in Fig. 5.

Fig. 4  Distribution of FOG duration
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Figure  5 illustrates: The ANOVA feature selection 
method of the standard deviation of classification sensi-
tivity and specificity is smaller than the mutual informa-
tion method, which indicates higher stability. As can be 

seen from the three figures, the sensitivity, specificity, 
and accuracy of ANOVA feature selection method are 
all higher than that of MI feature selection method when 
only 5 features are used, and tend to be stable when fewer 

Fig. 5  Comparison of the effectiveness between two feature selection methods (The vertical error bar denotes the standard deviation of 
cross-validation results)
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features are used, while the sensitivity, specificity and 
accuracy of MI feature selection method tend to be sta-
ble when more features are used, reflecting that the fea-
tures selected by ANOVA method are more capable of 
classification. Considering the resource consumption of 
practical applications, we hoped to use as few features as 
possible, so a smaller number of features achieving bet-
ter performance can meet our requirements. Therefore, 
ANOVA serves as a conducive feature selection method 
in this paper.

Sensor configuration evaluation and feature selection
Sensor configuration evaluation
This paper first studied the optimal selection of a sin-
gle sensor. In this regard, 13 features in Table  2 were 
extracted from the signals of each axis of 16 sensors for 
classification, and the detection results are shown in 
Table  3. According to the results, (1) left thigh acceler-
ometer achieved optimal effect, and accelerometer and 
gyroscope on the shank and the waist also yielded posi-
tive detection results; (2) on the whole, sensors on the 
leg and the waist presented better detection effect than 
those on the foot and the sole, and the detection effect 
of accelerometer on the leg and the waist outperformed 
that of gyroscope. Since the thigh just above knee is the 
most inconvenient position to wear the sensor, so the 
shank (ankle) can be chosen as the actual position for 
placing the accelerometer or the gyroscope. (3) All preci-
sions and f-scores ​​of a single sensor are low. The reason 
is that optimal performance may not be obtained with a 
single sensor, and imbalanced samples can lead to biased 
predictions.

With regard to the optimal combination of multiple 
sensors, this paper took waist and left lower extremity as 
the research objects, and first evaluated the effect of sen-
sor combination (accelerometer + gyroscope) at the same 
body part. Moreover, considering that FoG is a symptom 
mainly affecting the lower extremities of human body, 
the strategy of combining leg sensor + waist/foot/sole 
sensor was employed to probe into the combined effect 
of sensors at two parts. The detection results are shown 
in Table 4.

Feature selection
Considering information redundancy that may exist in 
the above sensor features, optimal features were selected 
for the left shank accelerometer, the left shank gyroscope, 
the left shank sensor combination, and waist & left shank 
sensor combination respectively by using ANOVA. Spe-
cifically, the importance ranking was performed first 
on each sensor features above, followed by testing the 

classification effect of top 5, top 10, top 15, ..., top k fea-
tures in importance ranking. The test results are shown 
in Fig. 6.

According to the results, (1) under the same number of 
features, the combination of the left shank gyroscope and 
accelerometer can achieve better classification effect than 
a single sensor; (2) left shank accelerometer, left shank 
gyroscope, left shank sensor combination and waist + 
left shank sensor combination achieve the best classifica-
tion results when using the features ranking top 25, top 
20, top 35 and top 65 respectively, and the optimal classi-
fication effect achieved by left shank sensor combination 
is close to that achieved by sensor combination on waist 
+ left shank. Taking into account overall factors includ-
ing detection performance, cost and actual deployment 
requirements, left shank accelerometer and gyroscope 
were eventually chosen as the optimal sensor configura-
tion. 35 features extracted are shown in Table 5, achiev-
ing 78.39% sensitivity (recall), 91.66% specificity, 88.09% 
accuracy, 77.58% precision and 77.98% f-score. In addi-
tion, according to Table  4, it is found that FI, entropy, 
root mean square, standard deviation, principal direction 
eigenvalue, and minimum value show good performance 
in most sensor axes. Therefore, when the number of sen-
sor axes and the number of features is limited, these fea-
tures can be prioritized.

Discussion
Our study was conducted on 12 PD patients. Through 
experiments on feature selection methods, sensor con-
figuration selection, and feature quantity selection, we 
obtained a set of optimal features that can be constructed 
a random forest FoG recognition model, finally achiev-
ing good recognition results: 78.39% sensitivity, 91.66% 
specificity, 88.09% accuracy, 77.58% precision and 77.98% 
f-score. The comparison of the results with most of the 
related literature work is difficult due to the diversity of 
approaches and validation methodologies.

Sigcha L et  al. [10] identified the FoG of PD patients 
by deep learning method and got good results: 87.1% 
sensitivity, 87.1% specificity. Rodriguez-Martin et  al. [8] 
detected FoG using support vector machines through a 
single waist-worn triaxial accelerometer with the result 
of 88.1% sensitivity and 80.1% specificity. Prithvi Patil 
et  al. [32] used kinematic features calculated by accel-
erometer worn at 6 Lower limb joints to build an ELM-
based multi-class gait classification model, achieving 
93.54% overall classification accuracy. According to these 
evaluation results, our FoG recognition sensitivity does 
not significantly exceed their results, but it has a high 
recognition specificity. In addition, although previous 
studies compared the FoG recognition results of different 
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algorithms, they did not attempt feature selection meth-
ods and sensor configurations, which may have a great 
impact on the performance of the model and the cost of 
the system.

Although a multi-sensor configuration (combining 
left shank sensor and waist sensor) has a better FoG 
recognition performance compared to a single-sensor 
configuration, considering recognition performance 
and actual deployment conditions, a single left shank 
sensor was chosen as the optimal sensor configuration. 
Luca Mesin et  al. [15] found that the different lower 
limb sensor features have excellent performance in rec-
ognizing FOG. Ying Wang et  al. [16, 17] also showed 

that the detection system using multi-sensor features 
(combining EEG and accelerometers) outperformed the 
single-sensor features (combining EEG and accelerom-
eters). Though they also have good recognition perfor-
mance, they didn’t consider the resource consumption 
problems.

At present, our study has some limitations. Our 
study only collected gait data of 12 PD patients in “ON” 
state, and the sample size was small, so we will increase 
research centers and continue to conduct FoG sam-
pling including patients who are in “ON” state and fur-
ther our study. Since this method only provides insight 
into the offline detection of FoG, and does not compare 

Table 3  The effect of single sensor in detecting FOG

Sensor Sensitivity (Recall) Specificity Accuracy precision F-score

Left/right thigh accelerometer 74.04%
71.90%

90.39%
89.27%

88.97%
87.76%

42.29%
38.95%

53.83%
50.53%

Left/right shank accelerometer 73.06%
71.58%

89.86%
89.15%

88.40%
87.62%

40.68%
38.62%

52.26%
50.17%

Left/right thigh gyroscope 72.08%
73.51%

89.88%
88.73%

88.33%
87.41%

40.45%
38.25%

51.82%
50.32%

Left/right shank gyroscope 71.99%
72.39%

88.95%
88.82%

87.47%
87.39%

38.38%
38.17%

50.07%
49.98%

Waist accelerometer 71.73%
——

88.85%
——

87.35%
——

38.19%
——

49.84%
——

Left/right foot gyroscope 71.26%
69.51%

88.21%
88.70%

86.73%
87.03%

36.64%
36.96%

48.40%
48.26%

Waist gyroscope 70.05%
——

88.46%
——

86.86%
——

36.62%
——

48.10%
——

Left/right sole pressure sensor 69.07%
68.83%

88.23%
87.96%

86.56%
86.29%

35.91%
35.35%

47.25%
46.71%

Left/right foot accelerometer 68.68%
68.15%

81.52%
88.24%

80.40%
86.49%

26.21%
35.61%

37.94%
46.78%

Table 4  FOG effect detected by multiple sensors

According to the results, (1) in terms of sensor combination at the same part, the best result is obtained at the thigh and shank sensor; (2) in terms of sensor 
combination at different parts, sensor combination of waist + thigh and waist + shank demonstrate the best effect, revealing the potential of the waist sensor. (3) All 
precisions and f-scores of a part of low limbs and ipsilateral sensors are low. The reason is that optimal performance may not be obtained with a type of signal and 
ipsilateral sensors, and imbalanced samples can lead to biased predictions

Sensor Position Sensitivity (Recall) Specificity Accuracy precision F-score

Left thigh 76.02% 90.46% 89.20% 43.24% 55.13%

Left shank 76.73% 90.74% 89.52% 44.15% 56.05%

Waist 73.86% 91.89% 90.32% 46.49% 57.06%

Left foot 72.68% 89.58% 88.11% 39.92% 51.53%

Waist + left thigh 78.90% 91.32% 90.24% 46.40% 58.44%

Waist + left shank 78.17% 92.29% 91.06% 49.17% 60.37%

Left thigh + left shank 77.71% 90.88% 89.73% 44.91% 56.92%

Left foot + left thigh 77.12% 90.93% 89.73% 44.73% 56.62%

Sole pressure + left thigh 76.65% 90.04% 88.87% 42.42% 54.61%

Sole pressure + left shank 75.71% 90.48% 89.19% 43.22% 55.03%

Left foot + left shank 75.49% 91.40% 90.01% 45.66% 56.90%
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same other machine learning classifiers, therefore, the 
future research work will focus on online detection 
including timeliness of recognition, algorithm optimi-
zation and others. Also, due to the limited dataset, we 
did not verify the generalization performance of our 
algorithm on an independent test set, but we will fur-
ther verify that our model is reliable in the near future.

Conclusion
This paper studied the effect of different feature selec-
tion methods, discussed optimal sensor configuration 
for effective FoG recognition, and selected optimal fea-
tures and quantity accordingly. Considering the actual 
deployment cost, computational cost, device portability 

and so forth, left shank gyroscope and accelerometer 
combination and 35 features were selected to detect 
FoG with 78.39% sensitivity, 91.66% specificity, 88.09% 
accuracy, 77.58% precision and 77.98% f-score. As the 
foundation for guiding subsequent implementation of 
measures, this research method can assist PD patients 
to resume walking and normal activities; it can also 
offer information about FoG symptoms as well, playing 
a guiding role in FoG research and treatment.

Acknowledgments
The authors would like to extend their gratitude to all participants and their 
families for their participation in this study.

Fig. 6  Classification effect of features selected for different sensor configurations

Table 5  Features were calculated from left shank accelerometer and gyroscope

a FI Freezing index

Accelerometer x axis Accelerometer y axis Accelerometer 
z axis

Gyroscope
x axis

Gyroscope
y axis

Gyroscope
z axis

FI a FI FI Power Max FI

Variability Min Entropy Energy Range Entropy

Standard Deviation Mean Variability Root mean Square

Entropy Entropy Entropy Entropy

Principal direction eigenvalue Principal Direction Eigenvalue Principal Direction Eigenvalue Standard Deviation

Absolute Mean Absolute Mean

Root Mean Square Root Mean Square

Energy Standard Deviation

Power Min

Range

Max

Min
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