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The robust UCATR algorithm enhances 
the specificity and sensitivity to detect 
the infarct of acute ischaemic stroke within 6 
hours of onset via non‑contrast computed 
tomography images
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Abstract 

Problem background:  Early detection of acute ischemic stroke (AIS) may provide patients with benefits against 
harmful health and financial impacts. The use of non-contrast computed tomography images for early detect of the 
infarct remains controversial.

Materials & methods:  Here, we used the UCATR algorithm to extract the pixel values of the infarct and the corre-
sponding contralateral healthy area as the control surface in each NCCT slice for the whole brain. Magnetic resonance 
imaging results were used to verify both areas. We found significant pathological changes in the infarct compared 
with the corresponding contralateral healthy area in each NCCT slice.

Attained results:  Our approach validated that NCCT can be used to detect the lesion area in the early stage of AIS.

Conclusions:  With obvious advantages such as saving time and the ability to quantify the infarct volume, this 
approach could help more patients survive the fatal and irreversible pathological process of AIS and improve their 
quality of life after AIS treatment.
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Introduction
Stroke is the second leading cause of mortality through-
out the world, with 5.5 million deaths (95% uncertainty 
interval [UI] 5.3–5.7 deaths) [1]. It is also the second 
most common cause of disability-adjusted life years 
(DALYs). In China, stroke is the leading cause of death 
and acquired adult disability, presenting tremendous 
social and economic burdens. With a growing popula-
tion and ageing, it is expected that the number of stroke 
patients and the health costs of stroke will continue to 
rise exponentially over time. Among the total preva-
lence of stroke patients, 84.4% (95% UI 82.1–86.4%) are 
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ischaemic [2], usually caused by large artery atheroscle-
rosis, cardioembolism, or small vessel occlusion. Con-
sequently, implementing effective therapies against the 
onset of acute ischaemic stroke (AIS) is critical for fur-
ther treatment and prognosis.

A previous study estimated that a total of 1.9 million 
neurons per minute are lost in an acute middle cerebral 
artery occlusion [3]. Given this speed, it is impera-
tive to reduce the time required to diagnose AIS so 
that treatment can be started as soon as possible. This 
approach would optimise the post-AIS treatment out-
come. Because rapid identification of the presence and 
extent of the infarct plays an essential role in AIS treat-
ment, neuroimaging technology is an indispensable 
component to diagnose AIS and guide the subsequent 
therapies.

Magnetic resonance imaging (MRI), especially dif-
fusion-weighted MRI (DW-MRI), is regarded as the 
most sensitive imaging modality to detect AIS, reaching 
73–92% sensitivity in the first 3 h. Given that the bene-
fits of AIS therapy are highly time sensitive, treatments 
should be initiated as soon as possible. Unfortunately, 
on average the MRI scanning process takes more than 
15 min. Non-contrast computed tomography (NCCT) is 
the most efficient and time-saving neuroimaging modal-
ity prior to intravenous alteplase therapy, which is most 
effective when delivered to patients within 4.5 h of stroke 
onset. NCCT has a markedly lower sensitivity than MRI 
to detect AIS: 57–71% in the first 24  h and 12% in the 
first 3 h. However, the NCCT scan requires less than 10 s, 
a much shorter time than required by MRI. Therefore, 
improving NCCT sensitivity to detect AIS early after 
it occurs is essential to improve the health outcome of 
patients [4, 5].

Diagnosing AIS early by using NCCT is challenging 
because the density and texture variations in the brain are 
too subtle to show an infarct within 12–25  h after AIS. 
Indeed, the subtle changes in the NCCT images of stroke 
are too imperceptible for the human eyes to observe, par-
ticularly in the hyperacute stage. Fortunately, computer 
technology has provided an exciting advance, with the 
ability to capture subtle changes on images. Specifically, 
using machine learning to segment ASI infarcts based on 
NCCT images presents excellent concordance with the 
stroke volume on DW-MRI images [6].

With the rapid development of computer-based tech-
niques to distinguish features of images, we can screen 
out single pixel changes in CT images. In this study, we 
aimed to increase the accuracy for detecting ischaemic 
lesions in NCCT images and to improve the prognosis of 
patients. We used computer-aided technology to assess 
infarcts in NCCT images that are invisible to the human 
eye within 6 h of stroke onset.

Methods
Subjects
We retrospectively reviewed patients with AIS who were 
admitted to the First Affiliated Hospital of Chengdu 
Medical College (Chengdu, China) from 1 January 2019 
to 1 April 2019. The inclusion criteria were: (1) received 
a clinical diagnosis of AIS; (2) diagnosis was within 6  h 
of stroke onset; (3) anterior circulation ischaemic stroke 
due to large-vessel occlusion; and (4) no early signs of 
infarct lesions for the first NCCT scan after stroke onset. 
The exclusion criteria were: (1) no first NCCT scan avail-
able; (2) a significant early sign of infarct lesions for the 
first NCCT scan, which defined as slight decreased den-
sity in the infarction area, brain swelling, hyperdense 
middle cerebral artery sign, loss of insular ribbon, obscu-
ration of lentiform nucleus, sulcal effacement.; (3) a his-
tory of stroke and intracranial malacia; (4) a history of 
central nervous system disease and left intracranial mala-
cia; and (5) infarct could not be found based on CT or 
MRI 24 h after onset. Ten patients were included in our 
study. Diagnoses were confirmed independently by two 
experienced physicians via reviewing clinical, laboratory, 
and radiological files from electronic medical.

Identifying potential infarcts by using CT and MRI images
Each patient was subjected to two neuroimaging exami-
nations. First, each patient underwent the NCCT exami-
nation within 6  h and showed no significant early signs 
of an infarct. Second, each patient underwent an MRI 
examination, and there was evidence of an infarct. After 
collecting those neuroimages, two experienced physi-
cians independently identified the infarcts on the MRI 
images, and they reached a consensus for a final decision. 
Then, two radiologists marked the infarct on the NCCT 
image as a red area. They marked the corresponding con-
tralateral healthy area as a yellow area (Fig. 1).

Methods for extracting pixel values
The pixel values of a potential infarct were extracted with 
the UCATR method, which uses the convolutional neural 
network (CNN) transformer encoder and cross attention 
decoder to effectively learn the global context features 
and suppress the unrelated or noisy areas. As shown in 
Fig. 2, we used ResNet50 as the CNN backbone to obtain 
the feature maps in different scales and then filtered 
out their irrelevant information by skip-connections 
and multi-head cross-attention (MHCA) modules to 
achieve high-precision spatial information recovery. For 
the NCCT images with a low signal-to-noise ratio, ani-
sotropy of images, and anatomical asymmetry, MHCA 
modules were used in all positions of skip-connection. 
This approach ensured a better fusion of low-level fea-
tures with high-level features, because the feature maps 
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transmitted from the CNN through the top skip-connec-
tion have more original information and fewer semantic 
features, while the feature maps that result from middle 
and bottom skip-connection provide more abstract fea-
tures. The transformer especially used at the bottom to 

learn global features and to provide long-distance struc-
tural information enables better recognition of small tar-
get lesions. Implementation of the end-to-end method 
allowed us to input a CT image and to generate a mask 
that directly indicates the significant difference in pixel 

Fig. 1  Workflow of pixel value extraction

Fig.2  The architecture of UCATR to generate the mask
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values where a potential infarct lies and its corresponding 
contralateral healthy area. The pixel values were obtained 
by multiplying the original image by the mask.

Statistics
Continuous variables are summarised with the mean 
and standard deviation (SD) while categorical variables 
are summarised with frequency and percentage. Because 
the pixel values failed to follow a normal distribution, 
the Wilcoxon test was used to compare the pixel values 
of an infarct in the first CT scan and its corresponding 
contralateral healthy area for each person and CT slice. 
Multilevel linear regressions were applied to estimate 
coefficients and 95% confidence intervals (CIs) for the 
difference in the pixel values between the infarct and 
the corresponding contralateral healthy area. For this 
analysis, the first level was the pixel value per person per 
CT image, the second level was the CT image per per-
son, and the third level was the individual image. In the 
regressions, we adjusted for age, sex, and onset time. All 
analyses were conducted by using R version 3.5.1. P < 0.05 
was defined as statistically significant.

Results
Patient characteristics
Table  1 shows the patient characteristics. For the 9 
patients included in our research, the mean age was 
77.80 years (SD = 6.46, range = 66–79 years), three were 
male, and the mean onset time was 4.49  h (SD = 3.28, 
range = 73–88  h). The TOAST classification was cardi-
oembolism for nine patients and small-vessel occlusion 
for one patient.

The differences in pixel values between the infarct 
and the corresponding contralateral healthy area for each 
patient and CT slice
Supplementary Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 show the results 
for comparing the pixel values between the infarct and 
the corresponding contralateral healthy area for each 
patient (1–9) and CT scan. For seven patients (1, 3, 5, 6, 
8, and 9), for most CT scans we found the pixel values of 
the infarct were significantly higher than the correspond-
ing contralateral healthy area. However, patients 4 and 8 
showed the reverse result. For patient 2, there was no sig-
nificant difference in the pixel values of the infarct and 
the corresponding contralateral healthy area for any of 
the CT scans.

The differences in pixel values between the infarct 
and the corresponding contralateral healthy area for each 
patient
Table 2 shows the differences in pixel values between the 
infarct and the contralateral healthy area for each patient. 

Table 1  The basic characteristics of patients

Abbreviation: OCT time from onset to first CT scan, NCCT​ Nonenoncontrast computed tomography, LMCA Left middle cerebral artery, RMCA Right middle cerebral 
artery, LICA Left internal carotid artery, RICA, Right internal carotid artery. unknown, wake-up stroke

No Sex Age OCT(hour) Culprit Artery TOAST classification NCCT slices

1 Male 79 1.77 LMCA cardioembolism 17

2 Female 88 unknown RMCA cardioembolism 7

3 Male 66 6.27 RMCA cardioembolism 24

4 Female 79 1.42 LMCA cardioembolism 11

5 Female 81 2.03 LMCA cardioembolism 42

6 Female 74 2.23 RICA cardioembolism 30

7 Female 73 unknown RMCA cardioembolism 39

8 Female 86 3.88 LMCA cardioembolism 16

9 Male 74 1.53 MICA cardioembolism 37

Table 2  The differences of pixel values between infarction 
lesions and normal areas for each patient

Abbreviation: IQR, Inter-quartile range
a  P value was estimated by Wilcox tests

Number Normal Infarction lesions Pa

Median (IQR) Median (IQR)

1 85 (67, 100) 95 (76, 111)  < 0.001

2 71 (60, 85) 71 (61, 84) 0.82

3 96 (77, 113) 98 (79, 114)  < 0.001

4 83 (69, 97) 81 (67, 95)  < 0.001

5 96 (78, 113) 99 (80, 116)  < 0.001

6 85 (70, 99) 91 (77, 104)  < 0.001

7 71 (57, 99) 85 (57, 99)  < 0.001

8 93 (74, 110) 93 (75, 110)  < 0.001

9 87 (69, 105) 85 (70, 99)  < 0.001
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There were variable pixel values for both the infarct and 
the corresponding contralateral healthy area. Overall, 
the infarcts of nine patients had higher pixel values than 
the corresponding contralateral healthy area, and one 
patient showed the reverse result. Specifically, seven out 
of 9 patients showed that the pixel values in infarct were 
significantly higher than the corresponding contralat-
eral healthy area (P < 0.001). However, patients 2 and 9 
showed that the pixel values in the infarct were signifi-
cantly lower than the corresponding contralateral healthy 
areas (P < 0.001).

The association between the infarcts and pixel values
Table  3 shows the results of multilevel regressions. 
We found that on average, the pixel values in infarcts 
increased by 3.70 compared with the corresponding con-
tralateral healthy area. The pixel values on average were 
higher in female compared with male patients (β = 7.89, 
P < 0.001). The pixel values on average decreased 0.47 as 
the age increased by 1 year (P = 0.01). The pixel values on 
average decreased 0.91 as the stroke onset time increased 
by 1 h (P = 0.01). Compared with the patients with small-
vessel occlusion, patients with cardioembolism had 
higher pixel values (β = 10.60, P < 0.001).

Discussion
We used the UCATR algorithm to identify potential 
infarcts based on NCCT images by using MRI images to 
verify and outline the infarcts and corresponding con-
tralateral healthy areas. Working independently, two neu-
rologists did not identify infarcts on the NCCT images 
during the hyperacute stage. When applying the UCATR 
algorithm, however, there were significant differences 

in the pixel values of infarcts compared with the cor-
responding contralateral healthy area based on the first 
CT scan. Seven out of 9 patients manifested significantly 
higher pixel values in the infarct compared with the cor-
responding contralateral healthy area. Furthermore, the 
three-level regression models confirmed these results 
after adjusting for age, sex, onset time, location, and type 
of AIS. Thus, the potential diagnostic capacity of AIS 
with NCCT images is compromised by the poor pixel 
discrimination abilities of human eyes.

Neuroimaging is the cornerstone for the diagnosis of 
suspected AIS. NCCT and MRI are mainstream diagnos-
tic tools for AIS: they have been assessed extensively to 
rule out haemorrhage and conditions that mimic stroke 
and to select the best candidates for treatments. Though 
NCCT is the real-world imaging workhorse due to its 
broad availability, low cost, and cost-effectiveness [7], 
it suffers from lower sensitivity of identifying ischae-
mic lesions compared with MRI, especially DW-MRI, 
which is the reference standard for the detection of early 
ischaemia. Previous studies suggest that the signs of 
infarct on NCCT are not visible within the first 8 h after 
stroke onset [8]. Our research indicates that computer-
aided diagnosis provides a promising improvement in 
assessing infarcts. While the two well-trained and quali-
fied neurologists failed to observe the subtle changes in 
pixel values of NCCT images during the early stage of 
stroke, the computer-aided UCATR approach revealed 
that seven out of 9 stroke patients had higher pixel val-
ues in the infarct than the corresponding contralateral 
healthy area. Furthermore, we found that the pixel val-
ues in the infarct increased on average 3.70 compared 
with the corresponding contralateral healthy area after 
adjustment of potential confounders in multilevel regres-
sions. A previous study used a computational method, 
the modified stroke imaging maker (SIM) method, to 
detect and localise invisible hyperacute ischaemia; the 
ischaemic hemisphere detection rate was 76%. This 
accumulated evidence suggests that the computer-aided 
method is sensitive in detecting subtle Hounsfield unit 
(HU) changes between brain hemispheres, even though 
the changes are imperceptible to trained neuroradiolo-
gists [9]. Both studies indicate that the ability of NCCT 
images to assess infarcts is underestimated because of 
the low ability of the human eye to distinguish changes. 
Therefore, the ability to detect the subtle changes in 
stroke NCCT images could be enhanced further by using 
advanced computational methods.

In a recent study, researchers collected NCCT images in 
patients with AIS (< 6 h from symptom onset to CT) who 
also underwent DW-MRI within 1 h. They found a good 
concordance between the machine learning approach for 
segmentation of infarcts due to AIS on NCCT images 

Table 3  The association between the infarction lesions and pixel 
values

Abbreviation: LMCA Left middle cerebral artery, RMCA Right middle cerebral 
artery

Sample types Beta coefficient S.E P

Area
  Normal Ref

  Infarction lesions 3.71 0.04  < 0.001

Sex
  Male Ref

  Female 11.83 0.90  < 0.001

Age 0.78 0.20  < 0.001

Time -7.02 0.96  < 0.001

Location
  LMCA Ref

  RMCA 49.76 7.15  < 0.001

  Others 11.68 1.48  < 0.001



Page 6 of 7Yu et al. BMC Neurology          (2022) 22:291 

and stroke volume on DW-MRI scans [6]. In another 
study, the researchers localised the infarcts of hyperacute 
ischaemic stroke on NCCT images among 139 patients 
via image registration of their corresponding follow-up 
DW-MRI examination. Then, they implemented sev-
eral supervised methods to capture the textural differ-
ences between the infarcts with their corresponding 
contralateral healthy areas [10]. Although we did not try 
to segment the infarcts in NCCT images for hyperacute 
ischaemic stroke, we rationalised those segmentations by 
using advanced computational methods. Because MRI 
allow for highly sensitive detection of infarcts, numerous 
methods have been developed to segment semi-automat-
ically or fully automatically the infarct of stroke by using 
MRI. Our research, however, indicates the potential high 
values and benefits to develop and implement those 
methods based on NCCT images for assisting neuroradi-
ologists to identify the early invisible infarct in AIS. Thus, 
additional methods should be developed to segment the 
invisible signs of early stroke in NCCT images to ensure 
optimum treatments and an improved prognosis. The 
mechanisms that underlie our results might relate to the 
early ischaemic changes in NCCT images, characterised 
by the presence of hypodense infarcts, but the NCCT 
images suffered from a low signal-to-noise ratio, anisot-
ropy of images, and anatomical asymmetry [11]. Hence, 
the subtle changes in NCCT intensity values are imper-
ceptible to neurologists during the first few hours from 
ictus [12].

To our knowledge, our study is the first attempt to 
compare the pixel values of infarcts that are invisible on 
the first CT scan and the corresponding contralateral 
healthy area. Our findings could strengthen the reliability 
of segmentation and detection of invisible infarcts based 
on NCCT images. The future work will be recruit more 
qualified samples to validated sensitivity and specificity 
of pixel value changes in NCCT scan in diagnosis against 
stroke.

Conclusion
This pilot study has validated that the pixel values of an 
infarct induced by AIS can be detected effectively with 
NCCT images. Our findings have been validated by using 
MRI images to identify the infarcts and corresponding 
contralateral healthy areas.

Limitations
First, because this study represents a pilot validation, 
we employed a small sample size. Second, we did not 
constrain the time between the stroke onset and MRI 
scans of the brain, a factor that might influence the size 
of the infarct identified on NCCT images. Because this 
might have an impact on our results, we adjusted the 

onset time in the multilevel regressions and found a 
significant difference between infarcts and correspond-
ing contralateral healthy areas, a phenomenon that 
could to some extent validate our results. Third, con-
sidering all admitted patients who underwent intrave-
nous thrombolysis or intravascular thrombectomy, the 
infarcts of second CT scans or MRI were smaller than 
the real ones, a factor that might have had an impact on 
our results.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12883-​022-​02825-9.

Additional file 1: Supplementary Figure 1. Comparing the pixel values 
between the infarct and the corresponding contralateral healthy area 
for patient 1# under the CT scan. Supplementary Figure 2. Comparing 
the pixel values between the infarct and the corresponding contralateral 
healthy area for patient 2# under the CT scan. Supplementary Figure 3. 
Comparing the pixel values between the infarct and the corresponding 
contralateral healthy area for patient 3# under the CT scan. Supplemen-
tary Figure 4. Comparing the pixel values between the infarct and the 
corresponding contralateral healthy area for patient 4# under the CT 
scan. Supplementary Figure 5. Comparing the pixel values between 
the infarct and the corresponding contralateral healthy area for patient 5# 
under the CT scan. Supplementary Figure 6. Comparing the pixel values 
between the infarct and the corresponding contralateral healthy area 
for patient 6# under the CT scan. Supplementary Figure 7. Comparing 
the pixel values between the infarct and the corresponding contralateral 
healthy area for patient 7# under the CT scan. Supplementary Figure 8. 
Comparing the pixel values between the infarct and the corresponding 
contralateral healthy area for patient 8# under the CT scan. Supplemen-
tary Figure 9. Comparing the pixel values between the infarct and the 
corresponding contralateral healthy area for patient 9# under the CT scan.

Acknowledgements
We thank the Department of Neurology, Chengdu Medical College, for logistic 
support.

Authors’ contributions
YJP and XF developed the study concept and drafted the manuscript; ZZ 
marked the CT images with XTZ, YQ, and ZKM; XQP performed the statisti-
cal analysis; XF, ZJ HT, and LC designed the algorithm and provided the 
software to extract the pixel values. The author(s) read and approved the final 
manuscript.

Funding
This study was supported by the Chengdu Medical College Natural Science 
Foundation (CYZ18-20, and CYZ19-33), the Chengdu Science and Technol-
ogy Bureau focus on research and development support plan (2019-YF09-
00097-SN), the Yunnan Education Bureau (SYSX202036), and the Educational 
Reform Project of Chengdu Medical College (No. JG202007).

Availability of data and materials
All data would be made available upon reasonable request to corresponding 
author.

Declarations

Ethics approval and consent to participate
We obtained ethical approval for this study from the Medical and Health 
Research Ethics Committee of the Chengdu Medical College. The current 
study was carried out according to the Declaration of Helsinki. Prior to enroll-
ment, all patients or their legal proxies provided detailed information regard-
ing the aims, scope and possible consequences of the trial by a physician. 

https://doi.org/10.1186/s12883-022-02825-9
https://doi.org/10.1186/s12883-022-02825-9


Page 7 of 7Yu et al. BMC Neurology          (2022) 22:291 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

No diagnostic or interventional procedures were required for the clinical trial. 
Written informed consent was obtained from all study participants or their 
legal proxies.

Consent for publication
Not available.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Neurology, First Affiliated Hospital of Chengdu Medical 
College, Sichuan 610500, China. 2 Department of Radiology, First Affiliated 
Hospital of Chengdu Medical College, Sichuan 610500, China. 3 Department 
of Public Health, Chengdu Medical College, Sichuan 610500, China. 4 MOEMIL 
Laboratory, School of Optoelectronic Information, University of Electronic 
Science and Technology of China, No. 4, Section 2, North Jianshe Road, 
Chengdu 610054, China. 5 Department of Clinical Medicine, Chengdu Medical 
College, Sichuan 610500, China. 

Received: 10 November 2021   Accepted: 2 August 2022

References
	1.	 GBD 2016 Stroke Collaborators. Global, regional, and national burden of 

stroke, 1990–2016: a systematic analysis for the global burden of disease 
study 2016. Lancet Neurol. 2019;18:439–58.

	2.	 Johnson CO, Nguyen M, Roth GA, Nichols E, Alam T, Abate D, et al. 
Global, regional, and national burden of stroke, 1990–2016: a systematic 
analysis for the global burden of disease study 2016. Lancet Neurol. 
2019;18:439–58.

	3.	 Desai SM, Rocha M, Jovin TG, Jadhav AP. High variability in neuronal loss. 
Stroke. 2019;50:34–7.

	4.	 Vilela P, Rowley HA. Brain ischemia: CT and MRI techniques in acute 
ischemic stroke. Eur J Radiol. 2017;96:162–72.

	5.	 El-Koussy M, Schroth G, Brekenfeld C, Arnold M. Imaging of acute 
ischemic stroke. Eur Neurol. 2014;72:309–16.

	6.	 Qiu W, Kuang H, Teleg E, Ospel JM, Sohn SI, Almekhlafi M, et al. Machine 
learning for detecting early infarction in acute stroke with non-contrast-
enhanced CT. Radiology. 2020;294:638–44.

	7.	 Khan R, Nael K, Erly W. Acute stroke imaging: what clinicians need to 
know. Am J Med. 2013;126:379–86.

	8.	 Nowinski WL, Gupta V, Qian G, He J, Poh LE, Ambrosius W, et al. Automatic 
detection, localization, and volume estimation of ischemic infarcts in 
noncontrast computed tomographic scans: method and preliminary 
results. Invest Radiol. 2013;48:661–70.

	9.	 Gomolka RS, Chrzan RM, Urbanik A, Nowinski WL. A quantitative method 
using head noncontrast CT scans to detect hyperacute nonvisible 
ischemic changes in patients with stroke. J Neuroimaging. 2016;26:581–7.

	10.	 Peter R, Korfiatis P, Blezek D, Oscar Beitia A, Stepan-Buksakowska I, 
Horinek D, et al. A quantitative symmetry-based analysis of hyperacute 
ischemic stroke lesions in noncontrast computed tomography. Med Phys. 
2017;44:192–9.

	11.	 Kuang H, Menon BK, Qiu W. Semi-automated infarct segmentation from 
follow-up noncontrast CT scans in patients with acute ischemic stroke. 
Med Phys. 2019;46:4037–45.

	12.	 von Kummer R, Bourquain H, Bastianello S, Bozzao L, Manelfe C, Meier D, 
et al. Early prediction of irreversible brain damage after ischemic stroke at 
CT. Radiology. 2001;219:95–100.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	The robust UCATR algorithm enhances the specificity and sensitivity to detect the infarct of acute ischaemic stroke within 6 hours of onset via non-contrast computed tomography images
	Abstract 
	Problem background: 
	Materials & methods: 
	Attained results: 
	Conclusions: 

	Introduction
	Methods
	Subjects
	Identifying potential infarcts by using CT and MRI images
	Methods for extracting pixel values
	Statistics

	Results
	Patient characteristics
	The differences in pixel values between the infarct and the corresponding contralateral healthy area for each patient and CT slice
	The differences in pixel values between the infarct and the corresponding contralateral healthy area for each patient
	The association between the infarcts and pixel values

	Discussion
	Conclusion
	Limitations

	Acknowledgements
	References


