Yao H, Liu Y, Zhou B, Zhang Z, An N, Wang P, et al. Decreased functional connectivity of the amygdala in Alzheimer’s disease revealed by resting-state fMRI. Eur J Radiol. 2013;82:1531–8.
Article
PubMed
Google Scholar
Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem. 1995;64:749–60.
Article
CAS
PubMed
Google Scholar
Kasa P, Rakonczay Z, Gulya K. The cholinergic system in Alzheimer’s disease. Prog Neurobiol. 1997;52:511–35.
Article
CAS
PubMed
Google Scholar
Toledano A, Alvarez MI. Lesions and dysfunctions of the nucleus basalis as Alzheimer’s disease models: general and critical overview and analysis of the long-term changes in several excitotoxic models. Curr Alzheimer Res. 2004;1:189–214.
Article
CAS
PubMed
Google Scholar
Wichmann T, Delong MR. Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron. 2006;52:197–204.
Article
CAS
PubMed
Google Scholar
Abdulla FA, Abu-Bakra MA, Calaminici MR, Stephenson JD, Sinden JD. Importance of forebrain cholinergic and GABAergic systems to the age-related deficits in water maze performance of rats. Neurobiol Aging. 1995;16:41–52.
Article
CAS
PubMed
Google Scholar
Freund HJ, Kuhn J, Lenartz D, Mai JK, Schnell T, Klosterkoetter J, et al. Cognitive functions in a patient with Parkinson-dementia syndrome undergoing deep brain stimulation. Arch Neurol. 2009;66:781–5.
Article
PubMed
Google Scholar
Neuhaus AH, Bajbouj M. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med. 2012;366:1945. author reply 1946.
Article
PubMed
Google Scholar
Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM, et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol. 2008;63:119–23.
Article
PubMed
Google Scholar
Wiley RG, Oeltmann TN, Lappi DA. Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res. 1991;562:149–53.
Article
CAS
PubMed
Google Scholar
Wrenn CC, Wiley RG. The behavioral functions of the cholinergic basal forebrain: lessons from 192 IgG-saporin. Int J Dev Neurosci. 1998;16:595–602.
Article
CAS
PubMed
Google Scholar
Berger-Sweeney J, Stearns NA, Murg SL, Floerke-Nashner LR, Lappi DA, Baxter MG. Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J Neurosci. 2001;21:8164–73.
CAS
PubMed
Google Scholar
Frick KM, Kim JJ, Baxter MG. Effects of complete immunotoxin lesions of the cholinergic basal forebrain on fear conditioning and spatial learning. Hippocampus. 2004;14:244–54.
Article
CAS
PubMed
Google Scholar
Vuckovich JA, Semel ME, Baxter MG. Extensive lesions of cholinergic basal forebrain neurons do not impair spatial working memory. Learning & memory (Cold Spring Harbor, NY). 2004;11:87–94.
Article
Google Scholar
Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, et al. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev. 2013;37:2676–88.
Article
PubMed
Google Scholar
Detari L, Rasmusson DD, Semba K. The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog Neurobiol. 1999;58:249–77.
Article
CAS
PubMed
Google Scholar
Vale-Martinez A, Guillazo-Blanch G, Marti-Nicolovius M, Nadal R, Arevalo-Garcia R, Morgado-Bernal I. Electrolytic and ibotenic acid lesions of the nucleus basalis magnocellularis interrupt long-term retention, but not acquisition of two-way active avoidance, in rats. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale. 2002;142:52–66.
Article
PubMed
Google Scholar
Wenk GL. The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol Learn Mem. 1997;67:85–95.
Article
CAS
PubMed
Google Scholar
Murray CL, Fibiger HC. Learning and memory deficits after lesions of the nucleus basalis magnocellularis: reversal by physostigmine. Neuroscience. 1985;14:1025–32.
Article
CAS
PubMed
Google Scholar
Bartus RT, Flicker C, Dean RL, Pontecorvo M, Figueiredo JC, Fisher SK. Selective memory loss following nucleus basalis lesions: long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav. 1985;23:125–35.
Article
CAS
PubMed
Google Scholar
Montero-Pastor A, Vale-Martinez A, Guillazo-Blanch G, Nadal-Alemany R, Marti-Nicolovius M, Morgado-Bernal I. Nucleus basalis magnocellularis electrical stimulation facilitates two-way active avoidance retention, in rats. Brain Res. 2001;900:337–41.
Article
CAS
PubMed
Google Scholar
Montero-Pastor A, Vale-Martinez A, Guillazo-Blanch G, Marti-Nicolovius M. Effects of electrical stimulation of the nucleus basalis on two-way active avoidance acquisition, retention, and retrieval. Behav Brain Res. 2004;154:41–54.
Article
PubMed
Google Scholar
Schumacher A, de Vasconcelos AP, Lecourtier L, Moser A, Cassel JC. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats. Behav Brain Res. 2011;222:368–74.
Article
CAS
PubMed
Google Scholar
Paxinos GWC. The Rat brain in stereotaxic coordinates. 6th ed. San Diego: Elsevier Academic Press; 2007.
Google Scholar
Ellman GL, Courtney KD, Andres Jr V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.
Article
CAS
PubMed
Google Scholar
Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20:353–60.
Article
CAS
PubMed
Google Scholar
Leon WC, Bruno MA, Allard S, Nader K, Cuello AC. Engagement of the PFC in consolidation and recall of recent spatial memory. Learning & memory (Cold Spring Harbor, NY). 2010;17:297–305.
Article
CAS
Google Scholar
Wang GW, Cai JX. Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res. 2006;175:329–36.
Article
PubMed
Google Scholar
Yoon T, Okada J, Jung MW, Kim JJ. Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learning & memory (Cold Spring Harbor, NY). 2008;15:97–105.
Article
Google Scholar
Maviel T, Durkin TP, Menzaghi F, Bontempi B. Sites of neocortical reorganization critical for remote spatial memory. Science (New York, NY). 2004;305:96–9.
Article
CAS
Google Scholar
Jo YS, Park EH, Kim IH, Park SK, Kim H, Kim HT, et al. The medial prefrontal cortex is involved in spatial memory retrieval under partial-cue conditions. J Neurosci. 2007;27:13567–78.
Article
CAS
PubMed
Google Scholar
Lee I, Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci. 2002;5:162–8.
Article
CAS
PubMed
Google Scholar
Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S. NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci. 2004;5:361–72.
Article
CAS
PubMed
Google Scholar
Iversen LL, Bloom FE. Studies of the uptake of 3 H-gaba and (3 H)glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 1972;41:131–43.
Article
CAS
PubMed
Google Scholar
Sivilotti L, Nistri A. GABA receptor mechanisms in the central nervous system. Prog Neurobiol. 1991;36:35–92.
Article
CAS
PubMed
Google Scholar
Kim HJ, Routtenberg A. Retention disruption following post-trial picrotoxin injection into the substantia nigra. Brain Res. 1976;113:620–5.
Article
CAS
PubMed
Google Scholar
Rossi AO. Genetics of learning disabilities. Behav Neuropsychiatry. 1972;4:2–7.
CAS
PubMed
Google Scholar
Lecourtier L, de Vasconcelos AP, Leroux E, Cosquer B, Geiger K, Lithfous S, et al. Septohippocampal pathways contribute to system consolidation of a spatial memory: sequential implication of GABAergic and cholinergic neurons. Hippocampus. 2011;21:1277–89.
Article
CAS
PubMed
Google Scholar
Jimenez-Capdeville ME, Dykes RW, Myasnikov AA. Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. J Comp Neurol. 1997;381:53–67.
Article
CAS
PubMed
Google Scholar
Manns ID, Alonso A, Jones BE. Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. J Neurophysiol. 2003;89:1057–66.
Article
CAS
PubMed
Google Scholar
Jouvenceau A, Billard JM, Lamour Y, Dutar P. Potentiation of glutamatergic EPSPs in rat CA1 hippocampal neurons after selective cholinergic denervation by 192 IgG-saporin. Synapse (New York, NY). 1997;26:292–300.
Article
CAS
Google Scholar
Marcaggi P, Billups D, Attwell D. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J Physiol. 2003;552:89–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
McIntyre CK, Marriott LK, Gold PE. Cooperation between memory systems: acetylcholine release in the amygdala correlates positively with performance on a hippocampus-dependent task. Behav Neurosci. 2003;117:320–6.
Article
CAS
PubMed
Google Scholar
Parent MB, Baxter MG. Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learning & memory (Cold Spring Harbor, NY). 2004;11:9–20.
Article
Google Scholar