Brunner C, Birbaumer N, Blankertz B, Guger C, Kübler A, Mattia D, et al. BNCI horizon 2020: towards a roadmap for the BCI community. Brain-Computer Interfaces. 2015;2:1–10. doi:10.1080/2326263X.2015.1008956.
Article
Google Scholar
Sellers EW, Ryan DB, Hauser CK. Noninvasive brain-computer interface enables communication after brainstem stroke. Sci Transl Med. 2014;6:257–64. doi:10.1126/scitranslmed.3007801.
Article
Google Scholar
Farwell L, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70:510–23. doi:10.1016/0013-4694(88)90149-6.
Article
CAS
PubMed
Google Scholar
Kleih SC, Kaufmann T, Zickler C, Halder S, Leotta F, Cincotti F, et al. Out of the frying pan into the fire—the P300-based BCI faces real-world challenges. Progr Brain Res. 2011;194:27–46. doi:10.1016/B978-0-444-53815-4.00019-4.
Article
Google Scholar
Mak JN, McFarland DJ, Vaughan TM, McCane LM, Tsui PZ, Zeitlin D, et al. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis. J Neural Eng. 2012;9. doi:10.1088/1741-2560/9/2/026014.
Nijboer F, Sellers E, Mellinger J, Jordan M, Matuz T, Furdea A, et al. A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119:1909–16. doi:10.1016/j.clinph.2008.03.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabiani M, Gratton G, Federmaier KD. Event-related potentials: methods, theory, and applications. In: Cacioppo JT, Tassinary LG, Berntson GG, editors. Handbook of psychophysiology. 3rd ed. Cambridge: Cambridge University Press; 2007.
Google Scholar
Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science. 1965;150:1187–8. doi:10.1126/science.150.3700.1187.
Article
CAS
PubMed
Google Scholar
Höhne J, Tangermann M. Towards user-friendly spelling with an auditory brain-computer interface: the CharStreamer paradigm. PLoS One. 2014;9, e98322. doi:10.1371/journal.pone.0098322.
Article
PubMed
PubMed Central
Google Scholar
Klobassa D, Vaughan T, Brunner P, Schwartz N, Wolpaw J, Neuper C, Sellers E. Toward a high-throughput auditory P300-based brain–computer interface. Clin Neurophysiol. 2009;120:1252–61. doi:10.1016/j.clinph.2009.04.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakaizumi C, Matsui T, Mori K, Makino S, Rutkowski TM. Head-related impulse response-based spatial auditory brain-computer interface. In: Müller-Putz G, Bauernfeind C, Brunner D, Steyrl S, Wriessnegger S, editors. Scherer R, editors; September 16–19; Graz University of Technology. Graz: Verlag der Technischen Universität Graz; 2014. p. 80–3.
Google Scholar
Sellers EW, Donchin E. A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol. 2006;117:538–48. doi:10.1016/j.clinph.2005.06.027.
Article
PubMed
Google Scholar
Schreuder M, Rost T, Tangermann M. Listen, you are writing! Speeding up online spelling with a dynamic auditory BCI. Front Neurosci. 2011;5:112. doi:10.3389/fnins.2011.00112.
Article
PubMed
PubMed Central
Google Scholar
Schreuder E-JM. Towards efficient auditory BCI through optimized paradigms and methods. Berlin: epubl; 2014.
Simon N, Käthner I, Ruf CA, Pasqualotto E, Kübler A, Halder S. An auditory multiclass brain-computer interface with natural stimuli: usability evaluation with healthy participants and a motor impaired end user. Front Hum Neurosci. 2015;8:1039. doi:10.3389/fnhum.2014.01039.
Article
PubMed
PubMed Central
Google Scholar
Höhne J, Schreuder M, Blankertz B, Tangermann M. A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front Neurosci. 2011;5:99. doi:10.3389/fnins.2011.00099.
Article
PubMed
PubMed Central
Google Scholar
Halder S, Hammer EM, Kleih SC, Bogdan M, Rosenstiel W, Birbaumer N, et al. Prediction of auditory and visual P300 brain-computer interface aptitude. PLoS One. 2013;8, e53513. doi:10.1371/journal.pone.0053513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–55. doi:10.1016/S0140-6736(10)61156-7.
Article
CAS
PubMed
Google Scholar
Kübler A, Blankertz B, Müller KR, Neuper C, et al. A model of BCI control. In: Müller-Putz S et al., editors. Proceedings of the 5th International. 2011. p. 100–3. Hg.
Polich J, Kok A. Cognitive and biological determinants of P300: an integrative review. Biol Psychol. 1995;41:103–46. doi:10.1016/0301-0511(95)05130-9.
Article
CAS
PubMed
Google Scholar
Linden DEJ. The P300: where in the brain is it produced and what does it tell us? Neuroscientist. 2005;11:563–76. doi:10.1177/1073858405280524.
Article
CAS
PubMed
Google Scholar
Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118:2128–48. doi:10.1016/j.clinph.2007.04.019.
Article
PubMed
PubMed Central
Google Scholar
Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10:131–46. doi:10.1080/17482960802654364.
Article
PubMed
Google Scholar
Schneider C, Fulda S, Schulz H. Daytime variation in performance and tiredness/sleepiness ratings in patients with insomnia, narcolepsy, sleep apnea and normal controls. J Sleep Res. 2004;13:373–83. doi:10.1111/j.1365-2869.2004.00427.x.
Article
CAS
PubMed
Google Scholar
Hammer A, Vielhaber S, Rodriguez-Fornells A, Mohammadi B, Münte TF. A neurophysiological analysis of working memory in amyotrophic lateral sclerosis. Brain Res. 2011;1421:90–9. doi:10.1016/j.brainres.2011.09.010.
Article
CAS
PubMed
Google Scholar
Hanagasi HA, Gurvit I, Ermutlu N, Kaptanoglu G, Karamursel S, Idrisoglu HA, et al. Cognitive impairment in amyotrophic lateral sclerosis: evidence from neuropsychological investigation and event-related potentials. Cogn Brain Res. 2002;14:234–44. doi:10.1016/S0926-6410(02)00110-6.
Article
Google Scholar
Paulus K, Magnano I, Piras M, Solinas M, Solinas G, Sau G, Aiello I. Visual and auditory event-related potentials in sporadic amyotrophic lateral sclerosis. Clin Neurophysiol. 2002;113:853–61. doi:10.1016/S1388-2457(02)00082-2.
Article
CAS
PubMed
Google Scholar
Gil R, Neau J-P, Dary-Auriol M, Agbo C, Tantot AM, Ingrand P. Event-related auditory evoked potentials and amyotrophic lateral sclerosis. Arch Neurol. 1995;52:890–6. doi:10.1001/archneur.1995.00540330068017.
Article
CAS
PubMed
Google Scholar
McCane LM, Heckman SM, McFarland DJ, Townsend G, Mak JN, Sellers EW, et al. P300-based brain-computer interface (BCI) event-related potentials (ERPs): people with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clin Neurophysiol. 2015;126:2124–31. doi:10.1016/j.clinph.2015.01.013.
Article
PubMed
PubMed Central
Google Scholar
Volpato C, Piccione F, Silvoni S, Cavinato M, Palmieri A, Meneghello F, Birbaumer N. Working memory in amyotrophic lateral sclerosis: auditory event-related potentials and neuropsychological evidence. J Clin Neurophysiol. 2010;27:198–206. doi:10.1097/WNP.0b013e3181e0aa14.
Article
PubMed
Google Scholar
Carrier J, Monk TH. Circadian rhythms of performance: new trends. Chronobiol Int. 2009;17:719–32. doi:10.1081/CBI-100102108.
Article
Google Scholar
Geisler MW, Polich J. P300 and individual differences: morning/evening activity preference, food, and time-of-day. Psychophysiology. 1992;29:86–94. doi:10.1111/j.1469-8986.1992.tb02019.x.
Article
CAS
PubMed
Google Scholar
Higuchi S, Liu Y, Yuasa T, Maeda A, Motohashi Y. Diurnal variation in the P300 component of human cognitive event-related potential. Chronobiol Int. 2000;17:669–78. doi:10.1081/CBI-100101073.
Article
CAS
PubMed
Google Scholar
Wesensten NJ, Badia P, Harsh J. Time of day, repeated testing, and interblock interval effects on P300 amplitude. Physiol Behav. 1990;47:653–8. doi:10.1016/0031-9384(90)90073-D.
Article
CAS
PubMed
Google Scholar
Geisler MW, Polich J. P300 and time of day: Circadian rhythms, food intake, and body temperature. Biol Psychol. 1990;31:117–36. doi:10.1016/0301-0511(90)90012-L.
Article
CAS
PubMed
Google Scholar
Polich J. EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 1997;104:244–56. doi:10.1016/S0168-5597(97)96139–6.
Nordin S, Andersson L, Olofsson JK, McCormack M, Polich J. Evaluation of auditory, visual and olfactory event-related potentials for comparing interspersed- and single-stimulus paradigms. Int J Psychophysiol. 2011;81:252–62. doi:10.1016/j.ijpsycho.2011.06.020.
Article
PubMed
Google Scholar
Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kubler A. An auditory brain-computer interface (BCI). J Neurosci Methods. 2008;167:43–50. doi:10.1016/j.jneumeth.2007.02.009.
Article
PubMed
Google Scholar
Mochty U. Sleep, Rapid Eye Movement, and Alertness in Patients with Amyotrophic Lateral Sclerosis [Dissertation]. Tübingen: Universität Tübingen; 2013.
Google Scholar
Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci. 1999;169:13–21.
Article
CAS
PubMed
Google Scholar
Polich J. P300 from a passive auditory paradigm. Electroencephalogr Clin Neurophysiol. 1989;74:312–20.
Article
CAS
PubMed
Google Scholar
Duncan-Johnson CC, Donchin E. The P300 component of the event-related brain potential as an index of information processing. Biol Psychol. 1982;14:1–52. doi:10.1016/0301-0511(82)90016-3.
Article
CAS
PubMed
Google Scholar
Semlitsch HV, Anderer P, Schuster P, Presslich O. A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology. 1986;23:695–703. doi:10.1111/j.1469-8986.1986.tb00696.x.
Article
CAS
PubMed
Google Scholar
Bakeman R. Recommended effect size statistics for repeated measures designs. Behav Res Methods. 2005;37:379–84. doi:10.3758/BF03192707.
Article
PubMed
Google Scholar
Rouder JN, Morey RD, Speckman PL, Province JM. Default Bayes factors for ANOVA designs. J Math Psychol. 2012;56:356–74. doi:10.1016/j.jmp.2012.08.001.
Article
Google Scholar
Searle SR, Speed FM, Milliken GA. Population marginal means in the linear model: an alternative to least squares means. Am Stat. 1980;34:216. doi:10.2307/2684063.
Google Scholar
Frigge M, Hoaglin DC, Iglewicz B. Some implementations of the boxplot. Am Stat. 1989;43:50. doi:10.2307/2685173.
Google Scholar
The R Development Core Team. R: A Language and Environment for Statistical Computing. 2010.
Google Scholar
Lawrence MA. ez: Easy analysis and visualization of factorial experiments for R. 2013.
Google Scholar
Lenth R, Herv M. Least-squares means package for R. 2015.
Google Scholar
Wheeler B. ImPerm: permutation tests package for R. 2010.
Google Scholar
Ligges U, Short T, Schnackenberg P, Billinghurst D, Borchers H-W, Carezia A, Dupius P, et al. Signal processing package for R. 2015.
Google Scholar
Furdea A, Halder S, Krusienski D, Bross D, Nijboer F, Birbaumer N, Kübler A. An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology. 2009;46:617–25. doi:10.1111/j.1469-8986.2008.00783.x.
Article
CAS
PubMed
Google Scholar
Lulé D, Noirhomme Q, Kleih SC, Chatelle C, Halder S, Demertzi A, et al. Probing command following in patients with disorders of consciousness using a brain–computer interface. Clin Neurophysiol. 2013;124:101–6. doi:10.1016/j.clinph.2012.04.030.
Article
PubMed
Google Scholar
Laureys S, Faymonville M, Degueldre C, Del Fiore G, Damas PLB, Janssens N, et al. Auditory processing in the vegetative state. Brain. 2000;123:1589–601. doi:10.1093/brain/123.8.1589.
Article
PubMed
Google Scholar
Murguialday AR, Hill J, Bensch M, Martens S, Halder S, Nijboer F, et al. Transition from the locked in to the completely locked-in state: a physiological analysis. Clin Neurophysiol. 2011;122:925–33. doi:10.1016/j.clinph.2010.08.019.
Article
PubMed
Google Scholar
Halder S, Rea M, Andreoni R, Nijboer F, Hammer E, Kleih S, et al. An auditory oddball brain–computer interface for binary choices. Clin Neurophysiol. 2010;121:516–23. doi:10.1016/j.clinph.2009.11.087.
Article
CAS
PubMed
Google Scholar
Höhne J, Krenzlin K, Dähne S, Tangermann M. Natural stimuli improve auditory BCIs with respect to ergonomics and performance. J Neural Eng. 2012;9:45003. doi:10.1088/1741-2560/9/4/045003.
Article
Google Scholar
Baykara E, Ruf CA, Fioravanti C, Käthner I, Simon N, Kleih SC, et al. Effects of training and motivation on auditory P300 brain-computer interface performance. Clin Neurophysiol. 2016;127:379–87. doi:10.1016/j.clinph.2015.04.054.
Article
CAS
PubMed
Google Scholar
Pokorny C, Klobassa DS, Pichler G, Erlbeck H, Real RG, Kübler A, et al. The auditory P300-based single-switch brain–computer interface: paradigm transition from healthy subjects to minimally conscious patients. Artif Intell Med. 2013;59:81–90. doi:10.1016/j.artmed.2013.07.003.
Article
PubMed
Google Scholar
Pfurtscheller G, Muller-Putz GR, Scherer R, Neuper C. Rehabilitation with brain-computer interface systems. Computer. 2008;41:58–65. doi:10.1109/MC.2008.432.
Article
Google Scholar
Silvoni S, Volpato C, Cavinato M, Marchetti M, Priftis K, Merico A, et al. P300-based brain-computer interface communication: evaluation and follow-up in amyotrophic lateral sclerosis. Front Neurosci. 2009;3:60. doi:10.3389/neuro.20.001.2009.
PubMed
PubMed Central
Google Scholar
Holz EM, Botrel L, Kaufmann T, Kübler A. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch Phys Med Rehabil. 2015;96:26. doi:10.1016/j.apmr.2014.03.035.
Article
Google Scholar
Sellers EW, Vaughan TM, Wolpaw JR. A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler. 2010;11:449–55. doi:10.3109/17482961003777470.
Article
PubMed
Google Scholar