Sospedra M, Martin R. Immunology of multiple sclerosis. Ann Rev Immunol. 2004; 23(1):683–747. https://doi.org/10.1146/annurev.immunol.23.021704.115707.
Article
CAS
Google Scholar
Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, Chandraratna D, Clanet M, Comi G, Derfuss T, Fazekas F, et al.Ectrims/ean guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler J. 2018; 24(2):96–120.
Article
Google Scholar
Tilling K, Lawton M, Robertson N, Tremlett H, Zhu F, Harding K, Oger J, Ben-Shlomo Y. Modelling disease progression in relapsing-remitting onset multiple sclerosis using multilevel models applied to longitudinal data from two natural history cohorts and one treated cohort. Health Technol Assess. 2016; 20(81):1–48. https://doi.org/10.3310/hta20810.
Article
PubMed
PubMed Central
Google Scholar
Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (edss). Neurology. 1983; 33(11):1444–52.
Article
CAS
PubMed
Google Scholar
Gajofatto A, Calabrese M, Benedetti MD, Monaco S. Clinical, mri, and csf markers of disability progression in multiple sclerosis. Dis Mark. 2013; 35(6):13. https://doi.org/10.1155/2013/484959.
Google Scholar
Tintoré M, Rovira A, Río J, Tur C, Pelayo R, Nos C, Téllez N, Perkal H, Comabella M, Sastre-Garriga J, Montalban X. Do oligoclonal bands add information to mri in first attacks of multiple sclerosis?Neurology. 2008; 70(13 Part 2):1079. https://doi.org/10.1212/01.wnl.0000280576.73609.c6.
Article
PubMed
Google Scholar
Pelayo R, Montalban X, Minoves T, Moncho D, Rio J, Nos C, Tur C, Castillo J, Horga A, Comabella M, Perkal H, Rovira A, Tintoré M. Do multimodal evoked potentials add information to mri in clinically isolated syndromes?Mult Scler J. 2009; 16(1):55–61. https://doi.org/10.1177/1352458509352666.
Article
Google Scholar
Martinelli V, Dalla Costa G, Messina MJ, Di Maggio G, Sangalli F, Moiola L, Rodegher M, Colombo B, Furlan R, Leocani L, Falini A, Comi G. Multiple biomarkers improve the prediction of multiple sclerosis in clinically isolated syndromes. Acta Neurol Scand. 2017; 136(5):454–61. https://doi.org/10.1111/ane.12761.
Article
CAS
PubMed
Google Scholar
Leocani L, Guerrieri S, Comi G. Visual evoked potentials as a biomarker in multiple sclerosis and associated optic neuritis. J Neuro-Ophthalmol. 2018; 38(3):350–7. https://doi.org/10.1097/wno.0000000000000704.
Article
Google Scholar
Nuwer MR, Packwood JW, Myers LW, Ellison GW. Evoked potentials predict the clinical changes in a multiple sclerosis drug study. Neurology. 1987; 37(11):1754. https://doi.org/10.1212/WNL.37.11.1754.
Article
CAS
PubMed
Google Scholar
O’Connor P, Marchetti P, Lee L, Perera M. Evoked potential abnormality scores are a useful measure of disease burden in relapsing–remitting multiple sclerosis. Ann Neurol. 1998; 44(3):404–7. https://doi.org/10.1002/ana.410440320.
Article
PubMed
Google Scholar
Fuhr P, Kappos L. Evoked potentials for evaluation of multiple sclerosis. Clin Neurophysiol. 2001; 112(12):2185–9. https://doi.org/10.1016/S1388-2457(01)00687-3.
Article
CAS
PubMed
Google Scholar
Fuhr P, Borggrefe-Chappuis A, Schindler C, Kappos L. Visual and motor evoked potentials in the course of multiple sclerosis. Brain. 2001; 124(11):2162–8. https://doi.org/10.1093/brain/124.11.2162.
Article
CAS
PubMed
Google Scholar
Kallmann BA, Fackelmann S, Toyka KV, Rieckmann P, Reiners K. Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult Scler J. 2006; 12(1):58–65. https://doi.org/10.1191/135248506ms1244oa.
Article
CAS
Google Scholar
Leocani L, Rovaris M, Boneschi FM, Medaglini S, Rossi P, Martinelli V, Amadio S, Comi G. Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry. 2006; 77(9):1030. https://doi.org/10.1136/jnnp.2005.086280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung P, Beyerle A, Ziemann U. Multimodal evoked potentials measure and predict disability progression in early relapsing–remitting multiple sclerosis. Mult Scler J. 2008; 14(4):553–6. https://doi.org/10.1177/1352458507085758.
Article
CAS
Google Scholar
Bejarano B, Bianco M, Gonzalez-Moron D, Sepulcre J, Goñi J, Arcocha J, Soto O, Del Carro U, Comi G, Leocani L, et al.Computational classifiers for predicting the short-term course of multiple sclerosis. BMC Neurol. 2011; 11(1):67.
Article
PubMed
PubMed Central
Google Scholar
Invernizzi P, Bertolasi L, Bianchi MR, Turatti M, Gajofatto A, Benedetti MD. Prognostic value of multimodal evoked potentials in multiple sclerosis: the ep score. J Neurol. 2011; 258(11):1933–9. https://doi.org/10.1007/s00415-011-6033-x.
Article
PubMed
Google Scholar
Schlaeger R, D’Souza M, Schindler C, Grize L, Kappos L, Fuhr P. Combined evoked potentials as markers and predictors of disability in early multiple sclerosis. Clin Neurophysiol. 2012; 123(2):406–10. https://doi.org/10.1016/j.clinph.2011.06.021.
Article
PubMed
Google Scholar
Schlaeger R, D’Souza M, Schindler C, Grize L, Dellas S, Radue EW, Kappos L, Fuhr P. Prediction of long-term disability in multiple sclerosis. Mult Scler J. 2011; 18(1):31–8. https://doi.org/10.1177/1352458511416836.
Article
Google Scholar
Schlaeger R, D’Souza M, Schindler C, Grize L, Kappos L, Fuhr P. Prediction of ms disability by multimodal evoked potentials: Investigation during relapse or in the relapse-free interval?Clin Neurophysiol. 2014; 125(9):1889–92. https://doi.org/10.1016/j.clinph.2013.12.117.
Article
CAS
PubMed
Google Scholar
Schlaeger R, D’Souza M, Schindler C, Grize L, Kappos L, Fuhr P. Electrophysiological markers and predictors of the disease course in primary progressive multiple sclerosis. Mult Scler J. 2013; 20(1):51–6. https://doi.org/10.1177/1352458513490543.
Article
Google Scholar
Schlaeger R, Hardmeier M, D’Souza M, Grize L, Schindler C, Kappos L, Fuhr P. Monitoring multiple sclerosis by multimodal evoked potentials: Numerically versus ordinally scaled scoring systems. Clin Neurophysiol. 2016; 127(3):1864–71. https://doi.org/10.1016/j.clinph.2015.11.041.
Article
PubMed
Google Scholar
Giffroy X, Maes N, Albert A, Maquet P, Crielaard J-M, Dive D. Multimodal evoked potentials for functional quantification and prognosis in multiple sclerosis. BMC Neurol. 2016; 16:83–3. https://doi.org/10.1186/s12883-016-0608-1.
Article
PubMed
PubMed Central
Google Scholar
Hardmeier M, Hatz F, Naegelin Y, Hight D, Schindler C, Kappos L, Seeck M, Michel CM, Fuhr P. Improved characterization of visual evoked potentials in multiple sclerosis by topographic analysis. Brain Topogr. 2014; 27(2):318–27. https://doi.org/10.1007/s10548-013-0318-6.
Article
PubMed
Google Scholar
Giffroy X, Maes N, Albert A, Maquet P, Crielaard JM, Dive D. Do evoked potentials contribute to the functional follow-up and clinical prognosis of multiple sclerosis?Acta Neurol Belg. 2017; 117(1):53–9. https://doi.org/10.1007/s13760-016-0650-1.
Article
PubMed
Google Scholar
Schlaeger R, Schindler C, Grize L, Dellas S, Radue EW, Kappos L, Fuhr P. Combined visual and motor evoked potentials predict multiple sclerosis disability after 20 years. Mult Scler J. 2014; 20(10):1348–54. https://doi.org/10.1177/1352458514525867.
Article
Google Scholar
Margaritella N, Mendozzi L, Garegnani M, Colicino E, Gilardi E, DeLeonardis L, Tronci F, Pugnetti L. Sensory evoked potentials to predict short-term progression of disability in multiple sclerosis. Neurol Sci. 2012; 33(4):887–92. https://doi.org/10.1007/s10072-011-0862-3.
Article
CAS
PubMed
Google Scholar
Margaritella N, Mendozzi L, Tronci F, Colicino E, Garegnani M, Nemni R, Gilardi E, Pugnetti L. The evoked potentials score improves the identification of benign ms without cognitive impairment. Eur J Neurol. 2013; 20(10):1423–5. https://doi.org/10.1111/ene.12071.
Article
CAS
PubMed
Google Scholar
Ramanathan S, Lenton K, Burke T, Gomes L, Storchenegger K, Yiannikas C, Vucic S. The utility of multimodal evoked potentials in multiple sclerosis prognostication. J Clin Neurosci. 2013; 20(11):1576–81. https://doi.org/10.1016/j.jocn.2013.01.020.
Article
PubMed
Google Scholar
Canham LJW, Kane N, Oware A, Walsh P, Blake K, Inglis K, Homewood J, Witherick J, Faulkner H, White P, Lewis A, Furse-Roberts C, Cottrell DA. Multimodal neurophysiological evaluation of primary progressive multiple sclerosis – an increasingly valid biomarker, with limits. Mult Scler Relat Disord. 2015; 4(6):607–13. https://doi.org/10.1016/j.msard.2015.07.009.
Article
CAS
PubMed
Google Scholar
London F, El Sankari S, van Pesch V. Early disturbances in multimodal evoked potentials as a prognostic factor for long-term disability in relapsing-remitting multiple sclerosis patients. Clin Neurophysiol. 2017; 128(4):561–9. https://doi.org/10.1016/j.clinph.2016.12.029.
Article
PubMed
Google Scholar
Comi G, Leocani L, Medaglini S, Locatelli T, Martinelli V, Santuccio G, Rossi P. Measuring evoked responses in multiple sclerosis. Mult Scler J. 1999; 5(4):263–7. https://doi.org/10.1177/135245859900500412.
Article
CAS
Google Scholar
Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in ms? repurposing evoked potentials as biomarkers for clinical trials in ms. Mult Scler J. 2017; 23(10):1309–19. https://doi.org/10.1177/1352458517707265.
Article
Google Scholar
Fernández O, Fernández V. Evoked potentials are of little use in the diagnosis or monitoring of ms: No. Mult Scler J. 2013; 19(14):1822–3.
Article
Google Scholar
McGuigan C. Evoked potentials are of little use in the diagnosis or monitoring of ms: Yes. Mult Scler J. 2013; 19(14):1820–1.
Article
Google Scholar
Hutchinson M. Evoked potentials are of little use in the diagnosis or monitoring of ms: Commentary. Mult Scler J. 2013; 19(14):1824–5.
Article
Google Scholar
Walsh P, Kane N, Butler S. The clinical role of evoked potentials. J Neurol Neurosurg Psychiatr. 2005; 76(suppl 2):16–22. https://doi.org/10.1136/jnnp.2005.068130.
Google Scholar
Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied Linear Statistical Models vol. 4: Irwin Chicago; 1996.
Spelman T, Jokubaitis V, Kalincik T, Butzkueven H, Grammond P, Hupperts R, Oreja-Guevara C, Boz C, Pucci E, Bergamaschi R, Lechner-Scott J, Alroughani R, Van Pesch V, Iuliano G, Fernandez-Bolaños R, Ramo C, Terzi M, Slee M, Spitaleri D, Verheul F, Cristiano E, Sánchez-Menoyo JL, Fiol M, Gray O, Cutter G, Cabrera-Gomez JA, Barnett M, Horakova D, Havrdova E, Trojano M, Izquierdo G, Prat A, Girard M, Duquette P, Lugaresi A, Grand’Maison F. Defining reliable disability outcomes in multiple sclerosis. Brain. 2015; 138(11):3287–98. https://doi.org/10.1093/brain/awv258. http://oup.prod.sis.lan/brain/article-pdf/138/11/3287/13798678/awv258.pdf.
Article
PubMed
Google Scholar
Livingston SC, Ingersoll CD. Intra-rater reliability of a transcranial magnetic stimulation technique to obtain motor evoked potentials. Int J Neurosci. 2008; 118(2):239–56. https://doi.org/10.1080/00207450701668020. http://arxiv.org/abs/https://doi.org/10.1080/00207450701668020.
Article
PubMed
Google Scholar
Cacchio A, Paoloni M, Cimini N, Mangone M, Liris G, Aloisi P, Santilli V, Marrelli A. Reliability of TMS-related measures of tibialis anterior muscle in patients with chronic stroke and healthy subjects. J Neurol Sci. 2011; 303(1):90–4. https://doi.org/10.1016/j.jns.2011.01.004. Accessed 25 Sept 2019.
Article
PubMed
Google Scholar
Hoonhorst MH, Kollen BJ, Van Den Berg PS, Emmelot CH, Kwakkel G. How reproducible are transcranial magnetic stimulation–induced meps in subacute stroke?J Clin Neurophysiol. 2014; 31(6):556–62.
Article
PubMed
Google Scholar
Hardmeier M, Jacques F, Albrecht P, Bousleiman H, Schindler C, Leocani L, Fuhr P. Multicentre assessment of motor and sensory evoked potentials in multiple sclerosis: reliability and implications for clinical trials. Mult Scler J Exp Transl Clin. 2019; 5(2):2055217319844796. https://doi.org/10.1177/2055217319844796. http://arxiv.org/abs/https://doi.org/10.1177/2055217319844796.
PubMed
PubMed Central
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011; 12:2825–30.
Google Scholar
Kursa M, Rudnicki W. Feature selection with the boruta package. J Stat Softw Artic. 2010; 36(11):1–13. https://doi.org/10.18637/jss.v036.i11.
Google Scholar
Fulcher BD, Little MA, Jones NS. Highly comparative time-series analysis: the empirical structure of time series and their methods. J R Soc Interface. 2013; 10(83):20130048.
Article
PubMed
PubMed Central
Google Scholar
Fulcher BD, Jones NS. A computational framework for automated time-series phenotyping using massive feature extraction. Cell Syst. 2017; 5(5):527–5313. https://doi.org/10.1016/j.cels.2017.10.001.
Article
CAS
PubMed
Google Scholar
Lines J, Taylor S, Bagnall A. Time series classification with hive-cote: The hierarchical vote collective of transformation-based ensembles. ACM Trans Knowl Discov Data. 2018; 12(5):52–15235. https://doi.org/10.1145/3182382.
Article
Google Scholar
Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, et al.Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014; 5:4006.
Article
CAS
PubMed
Google Scholar
Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods for random forests and omics data sets. Brief Bioinf. 2017. https://doi.org/10.1093/bib/bbx124. http://oup.prod.sis.lan/bib/advance-article-pdf/doi/10.1093/bib/bbx124/21301018/bbx124.pdf.
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, Springer Series in Statistics: Springer; 2009. https://books.google.be/books?id=tVIjmNS3Ob8C.
Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C, Mesirov J. Estimating dataset size requirements for classifying dna microarray data. J Comput Biol. 2003; 10:119–42. https://doi.org/10.1089/106652703321825928.
Article
CAS
PubMed
Google Scholar
Cho J, Lee K, Shin E, Choy G, Do S. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?arXiv preprint. 2015. arXiv:1511.06348.
Zhu X, Vondrick C, Fowlkes CC, Ramanan D. Do we need more training data?Int J Comput Vis. 2016; 119(1):76–92.
Article
Google Scholar
Sun C, Shrivastava A, Singh S, Gupta A. Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision: 2017. p. 843–52. https://doi.org/10.1109/iccv.2017.97.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44(3):837–45.
Article
CAS
PubMed
Google Scholar
De Brouwer E, Peeters L, Becker T, Altintas A, Soysal A, Van Wijmeersch B, Boz C, Oreja-Guevara C, Gobbi C, Solaro C, et al.Introducing machine learning for full ms patient trajectories improves predictions for disability score progression. Mult Scler J. 2019; 25:63–5.
Article
CAS
Google Scholar
Lipton ZC, Kale D, Wetzel R. Directly modeling missing data in sequences with rnns: Improved classification of clinical time series In: Doshi-Velez F, Fackler J, Kale D, Wallace B, Wiens J, editors. Proceedings of the 1st Machine Learning for Healthcare Conference, Proceedings of Machine Learning Research, vol. 56. Children’s Hospital LA, Los Angeles: PMLR: 2016. p. 253–70. http://proceedings.mlr.press/v56/Lipton16.html.
Google Scholar
Che Z, Purushotham S, Cho K, Sontag D, Liu Y. Recurrent neural networks for multivariate time series with missing values. Sci Rep. 2018; 8(1):6085. https://doi.org/10.1038/s41598-018-24271-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trojano M, Tintore M, Montalban X, Hillert J, Kalincik T, Iaffaldano P, Spelman T, Sormani MP, Butzkueven H. Treatment decisions in multiple sclerosis - insights from real-world observational studies. Nat Rev Neurol. 2017; 13(2):105–18. https://doi.org/10.1038/nrneurol.2016.188.
Article
PubMed
Google Scholar
Kalincik T, Brown JWL, Robertson N, Willis M, Scolding N, Rice CM, Wilkins A, Pearson O, Ziemssen T, Hutchinson M, McGuigan C, Jokubaitis V, Spelman T, Horakova D, Havrdova E, Trojano M, Izquierdo G, Lugaresi A, Prat A, Girard M, Duquette P, Grammond P, Alroughani R, Pucci E, Sola P, Hupperts R, Lechner-Scott J, Terzi M, Van Pesch V, Rozsa C, Grand’Maison F, Boz C, Granella F, Slee M, Spitaleri D, Olascoaga J, Bergamaschi R, Verheul F, Vucic S, McCombe P, Hodgkinson S, Sanchez-Menoyo JL, Ampapa R, Simo M, Csepany T, Ramo C, Cristiano E, Barnett M, Butzkueven H, Coles A, Group MSS. Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurol. 2017; 16(4):271–81. https://doi.org/10.1016/S1474-4422(17)30007-8.
Article
CAS
PubMed
Google Scholar
Gafson A, Craner MJ, Matthews PM. Personalised medicine for multiple sclerosis care. Mult Scler. 2017; 23(3):362–9. https://doi.org/10.1177/1352458516672017.
Article
PubMed
Google Scholar
Hardmeier M, Jacques F, Albrecht P, Bousleiman H, Schindler C, Leocani L, Fuhr P. F107. sensory and motor evoked potentials in a multicenter setting: Estimation of detectable group differences at varying sample sizes. Clin Neurophysiol. 2018; 129:106–7. https://doi.org/10.1016/j.clinph.2018.04.270.
Article
Google Scholar
Hardmeier M, Jacques F, Albrecht P, Bousleiman H, Schindler C, Leocani L, Fuhr P. T85. sensory and motor evoked potentials in a multicenter setting: Definition of significant change in repeated measurements in healthy subjects on individual level. Clin Neurophysiol. 2018; 129:34–5. https://doi.org/10.1016/j.clinph.2018.04.086.
Article
Google Scholar