Grafstein B. Mechanism of spreading cortical depression. J Neurophysiol. 1956;19(2):154–71. https://doi.org/10.1152/jn.1956.19.2.154.
Article
CAS
PubMed
Google Scholar
Martin PR. Behavioral management of migraine headache triggers: learning to cope with triggers. Curr Pain Headache Rep. 2010;14(3):221–7. https://doi.org/10.1007/s11916-010-0112-z.
Article
PubMed
Google Scholar
Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, et al. A neural mechanism for exacerbation of headache by light. Nat Neurosci. 2010;13(2):239–45. https://doi.org/10.1038/nn.2475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noseda R, Copenhagen D, Burstein R. Current understanding of photophobia, visual networks and headaches. Cephalalgia. 2019;39(3):1623–34. https://doi.org/10.1177/0333102418784750.
Article
PubMed
Google Scholar
Zele AJ, Dey A, Adhikari P, Feigl B. Melanopsin hypersensitivity dominates interictal photophobia in migraine. Cephalalgia. 2021;41(2):217–26 https://journals.sagepub.com/doi/10.1177/0333102420963850.
Article
Google Scholar
Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433(7027):749–54. https://doi.org/10.1038/nature03387.
Article
CAS
PubMed
Google Scholar
Prigge CL, Yeh PT, Liou NF, Lee CC, You SF, Liu LL, et al. M1 ipRGCs influence visual function through retrograde signaling in the retina. J Neurosci. 2016;36(27):7184–97. https://doi.org/10.1523/JNEUROSCI.3500-15.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Stafford BK, Godin AL, King WM, Wong KY. Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. J Physiol. 2014;592(7):1619–36. https://doi.org/10.1113/jphysiol.2013.262782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawasaki A, Kardon RH. Intrinsically photosensitive retinal ganglion cells. J Neuroophthalmol. 2007;27(3):195–204. https://doi.org/10.1097/WNO.0b013e31814b1df9.
Article
PubMed
Google Scholar
Park JC, Moura AL, Raza AS, Rhee DW, Kardon RH, Hood DC. Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. Invest Ophthalmol Vis Sci. 2011;52(9):6624–35. https://doi.org/10.1167/iovs.11-7586.
Article
PubMed
PubMed Central
Google Scholar
Adhikari P, Feigl B, Zele AJ. Rhodopsin and melanopsin contributions to the early redilation phase of the post-illumination pupil response (PIPR). PLoS One. 2016;11(8):e0161175. https://doi.org/10.1371/journal.pone.0161175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gracitelli CP, Duque-Chica GL, Moura AL, Nagy BV, de Melo GR, Roizenblatt M, et al. A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci. 2014;55(12):7997–8005. https://doi.org/10.1167/iovs.14-15146.
Article
PubMed
Google Scholar
Main A, Vlachonikolis I, Dowson A. The wavelength of light causing photophobia in migraine and tension-type headache between attacks. Headache. 2000;40(3):194–9. https://doi.org/10.1046/j.1526-4610.2000.00028.x.
Article
CAS
PubMed
Google Scholar
Carle CF, James AC, Kolic M, Essex RW, Maddess T. Blue multifocal pupillographic objective perimetry in glaucoma. Invest Ophthalmol Vis Sci. 2015;56(11):6394–403. https://doi.org/10.1167/iovs.14-16029.
Article
PubMed
Google Scholar
Bell A, James AC, Kolic M, Essex RW, Maddess T. Dichoptic multifocal pupillography reveals afferent visual field defects in early type 2 diabetes. Invest Ophthalmol Vis Sci. 2010;51(1):602–8. https://doi.org/10.1167/iovs.09-3659.
Article
PubMed
Google Scholar
Carle CF, Maddess T, James AC. Contraction anisocoria: segregation, summation, and saturation in the pupillary pathway. Invest Ophthalmol Vis Sci. 2011;52(5):2365–71. https://doi.org/10.1167/iovs.10-6335.
Article
PubMed
Google Scholar
Cambron M, Maertens H, Paemeleire K, Crevits L. Autonomic function in migraine patients: ictal and interictal pupillometry. Headache. 2013;54(4):655–62. https://doi.org/10.1111/head.12139.
Article
PubMed
Google Scholar
Barriga FJ, Lopez de Silanes C, Gili P, Pareja JA. Ciliary ganglioplegic migraine: migraine-related prolonged mydriasis. Cephalalgia. 2011;31(3):291–5. https://doi.org/10.1177/0333102410381144.
Article
CAS
PubMed
Google Scholar
McKendrick AM, Badcock DR. Decreased visual field sensitivity measured 1 day, then 1 week, after migraine. Invest Ophthalmol Vis Sci. 2004;45(4):1061–70. https://doi.org/10.1167/iovs.03-0936.
Article
PubMed
Google Scholar
McKendrick AM, Badcock DR. An analysis of the factors associated with visual field deficits measured with flickering stimuli in-between migraine. Cephalalgia. 2004;24(5):389–97. https://doi.org/10.1111/j.1468-2982.2004.00682.x.
Article
CAS
PubMed
Google Scholar
Yenice O, Temel A, Incili B, Tuncer N. Short-wavelength automated perimetry in patients with migraine. Graefes Arch Clin Exp Ophthalmol. 2006;244(5):589–95. https://doi.org/10.1007/s00417-005-0083-7.
Article
PubMed
Google Scholar
Yener AU, Korucu O. Visual field losses in patients with migraine without aura and tension-type headache. Neuro-Ophthalmol. 2017;41(2):59–67. https://doi.org/10.1080/01658107.2016.1251466.
Article
Google Scholar
Harle DE, Evans BJW. Frequency doubling technology perimetry and standard automated perimetry in migraine. Ophthalmic Physiol Opt. 2005;25(3):233–9. https://doi.org/10.1111/j.1475-1313.2005.00285.x.
Article
PubMed
Google Scholar
Sabeti F, Maddess T, Essex RW, James AC. Multifocal pupillography identifies ranibizumab-induced changes in retinal function for exudative age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53(1):253–60. https://doi.org/10.1167/iovs.11-8004.
Article
CAS
PubMed
Google Scholar
Ali E, Maddess T, James A, Voicu C, Lueck C. Pupillary response to sparse multifocal stimuli in multiple sclerosis patients. Mult Scler. 2014;20:854–61. https://doi.org/10.1177/1352458513512708.
Article
CAS
PubMed
Google Scholar
Sabeti F, Carle CF, Jaros RK, Rohan EMF, J LC, Hughes D, et al. Objective perimetry in sporting-related mild traumatic brain injury. Ophthalmology. 2019;126(7):1053–5. https://doi.org/10.1016/j.ophtha.2019.01.026.
Article
PubMed
Google Scholar
Sabeti F, James AC, Carle CF, Essex RW, Bell A, Maddess T. Comparing multifocal pupillographic objective perimetry (mfPOP) and multifocal visual evoked potentials (mfVEP) in retinal diseases. Sci Rep. 2017;7(1):45847. https://doi.org/10.1038/srep45847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosli Y, Carle CF, Ho Y, James AC, Kolic M, Rohan EMF, et al. Retinotopic effects of visual attention revealed by dichoptic multifocal pupillography. Sci Report. 2018;8(1):2991. https://doi.org/10.1038/s41598-018-21196-1.
Article
CAS
Google Scholar
Carle CF, James AC, Maddess T. The pupillary response to color and luminance variant multifocal stimuli. Invest Ophthalmol Vis Sci. 2013;54(1):467–75. https://doi.org/10.1167/iovs.12-10829.
Article
PubMed
Google Scholar
IHS Headache Classification Committee. The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. https://doi.org/10.1177/0333102417738202.
Article
Google Scholar
Maddess T, Bedford SM, Goh XL, James AC. Multifocal pupillographic visual field testing in glaucoma. Clin Exp Ophthalmol. 2009;37(7):678–86. https://doi.org/10.1111/j.1442-9071.2009.02107.x.
Article
PubMed
Google Scholar
Lawrence M, Friedman CDF, DeMets DL. Fundamentals of clinical trials. New york: Springer; 1998. ISBN 978-3-319-18539-2.
Urbaniak GC, Plous S. Research randomizer In., 4.0 edn. 2013. http://www.randomizer.org/.
Google Scholar
Jensen R, Tassorelli C, Rossi P, Allena M, Osipova V, Steiner T, et al. A basic diagnostic headache diary (BDHD) is well accepted and useful in the diagnosis of headache. a multicentre European and Latin American study. Cephalalgia. 2011;31(15):1549–60. https://doi.org/10.1177/0333102411424212.
Article
CAS
PubMed
Google Scholar
McDougal DH, Gamlin PD. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vis Res. 2010;50(1):72–87. https://doi.org/10.1016/j.visres.2009.10.012.
Article
PubMed
Google Scholar
Herbst K, Sander B, Lund-Andersen H, Broendsted AE, Kessel L, Hansen MS, et al. Intrinsically photosensitive retinal ganglion cell function in relation to age: a pupillometric study in humans with special reference to the age-related optic properties of the lens. BMC Ophthalmol. 2012;12(1):4. https://doi.org/10.1186/1471-2415-12-4.
Article
PubMed
PubMed Central
Google Scholar
Sabeti F, Maddess T, Essex RW, Saikal A, James AC, Carle CF. Multifocal pupillography in early age-related macular degeneration. Optom Vis Sci. 2014;91(8):904–15. https://doi.org/10.1097/opx.0000000000000319.
Article
PubMed
Google Scholar
Carle CF, James AC, Rosli Y, Maddess T. Localization of neuronal gain control in the pupillary response. Front Neurol. 2019;10(203):1–9. https://doi.org/10.3389/fneur.2019.00203.
Article
Google Scholar
Zagami A, Bahra A. Symptomatology of migraines without aura. In the headaches. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006.
Google Scholar
Ruseckaite R, Maddess T, James AC. Frequency doubling illusion VEPs and automated perimetry in multiple sclerosis. Doc Ophthalmol. 2006;113(1):29–41. https://doi.org/10.1007/s10633-006-9011-3.
Article
PubMed
Google Scholar
Coppola G, Schoenen J. Cortical excitability in chronic migraine. Curr Pain Headache Rep. 2012;16(1):93–100. https://doi.org/10.1007/s11916-011-0231-1.
Article
PubMed
Google Scholar
Spitschan M, Jain S, Brainard DH, Aguirre GK. Opponent melanopsin and S-cone signals in the human pupillary light response. Proc Natl Acad Sci U S A. 2014;111(43):15568–72. https://doi.org/10.1073/pnas.1400942111.
Article
CAS
PubMed
PubMed Central
Google Scholar
McAdams H, Kaiser EA, Igdalova A, Haggerty EB, Cucchiara B, Brainard DH, et al. Selective amplification of ipRGC signals accounts for interictal photophobia in migraine. Proc Natl Acad Sci U S A. 2020;117(29):17320–9. https://doi.org/10.1073/pnas.2007402117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng YF, Guo H, Huang JH, Yu JG, Yuan F. Retinal nerve fiber layer thickness changes in migraine: a meta-analysis of case-control studies. Curr Eye Res. 2016;41(6):814–22. https://doi.org/10.3109/02713683.2015.1056373.
Article
CAS
PubMed
Google Scholar
Nguyen BN, McKendrick AM, Vingrys AJ. Simultaneous retinal and cortical visually evoked electrophysiological responses in between migraine attacks. Cephalalgia. 2012;32(12):896–907. https://doi.org/10.1177/0333102412453953.
Article
PubMed
Google Scholar
Nguyen BN, McKendrick AM, Vingrys AJ. Abnormal inhibition-excitation imbalance in migraine. Cephalalgia. 2015;36(1):5–14. https://doi.org/10.1177/0333102415576725.
Article
PubMed
Google Scholar
Walsh DV, Capo-Aponte JE, Jorgensen-Wagers K, Temme LA, Goodrich G, Sosa J, et al. Visual field dysfunctions in warfighters during different stages following blast and nonblast mTBI. Mil Med. 2015;180(2):178–85. https://doi.org/10.7205/MILMED-D-14-00230.
Article
PubMed
Google Scholar
Battista J, Badcock DR, McKendrick AM. Migraine increases centre-surround suppression for drifting visual stimuli. PLoS One. 2011;6(4):e18211. https://doi.org/10.1371/journal.pone.0018211.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKendrick AM, Chan YM, Vingrys AJ, Turpin A, Badcock DR. Daily vision testing can expose the prodromal phase of migraine. Cephalalgia. 2018;38(9):1575–84. https://doi.org/10.1177/0333102417741130.
Article
PubMed
Google Scholar
Jones KA, Hatori M, Mure LS, Bramley JR, Artymyshyn R, Hong SP, et al. Small-molecule antagonists of melanopsin-mediated phototransduction. Nat Chem Biol. 2013;9(10):630–5. https://doi.org/10.1038/nchembio.1333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Good PA, Taylor RH, Mortimer MJ. The use of tinted glasses in childhood migraine. Headache. 1991;31(8):533–6. https://doi.org/10.1111/j.1526-4610.1991.hed3108533.x.
Article
CAS
PubMed
Google Scholar
Hay KM, Mortimer MJ, Barker DC, Debney LM, Good PA. 1044 women with migraine: the effect of environmental stimuli. Headache. 1994;34(3):166–8. https://doi.org/10.1111/j.1526-4610.1994.hed3403166.x.
Article
CAS
PubMed
Google Scholar
Marcus DA, Soso MJ. Migraine and stripe-induced visual discomfort. Arch Neurol. 1989;46(10):1129–32. https://doi.org/10.1001/archneur.1989.00520460125024.
Article
CAS
PubMed
Google Scholar