Graham EL, Clark J, Orban ZS, et al. Resistant neurologic symptoms and cognitive dysfunction on hospitalized Covid-19 “long haulers”. Ann Clin Transl Neurol. 2021;8(5):1073–85. https://doi.org/10.1002/acn3.51350.
Article
CAS
Google Scholar
Premraj L, Kannapadi N, Briggs J, et al. Mid and long term neurological and neuropsychiatric manifestations of post COVID-19 syndrome: a meta-analysis. J Neurol Sci. 2022;434:120162. https://doi.org/10.1016/j.jns.2022.120162.
Article
CAS
Google Scholar
Natale NR, Lukens JR, Petry WA Jr. The nervous system during COVID-19: caught in the crossfire. Immunol Rev. 2022;311(1):90–111. https://doi.org/10.1111/imr.13114.
Article
CAS
Google Scholar
Graham EL, Koralnik IJ, Liotta EM. Therapeutic approaches to the neurologic manifestations of COVID-19. Neurotherapuetics. 2022;19(5):1435–66. https://doi.org/10.1007/s13311-022-01267-y.
Article
CAS
Google Scholar
Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV, WHO Clinical case definition working group on post-COVID-19 condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–7. https://doi.org/10.1016/S1473-3099(21)00703-9.
Vanichkachorn G, Newcomb R, Cowl CT, et al. Post-COVID-19 syndrome (long haul syndrome) description of a multidisciplinary clinic at Mayo Clinic and characteristics of the initial patient cohort. Mayo Clin Proc. 2021;96(7):1782–91. https://doi.org/10.1016/jmayocp.2021.04.024.
Ceban F, Ling S, Lui LMW, et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: a systemic review and meta-analysis. Brain Behav Immun. 2022;101:93–135. https://doi.org/10.1016/j.bbi.2021.12.020.
Article
CAS
Google Scholar
Aiyegbusi OL, Hughes SE, Turner G. TLC study group, et al. symptoms, complications and management of long COVID: a review. J R Soc Med. 2021;114(9):428–42. https://doi.org/10.1177/01410768211032850.
Article
Google Scholar
Widmann CN, Wieberneit M, Bieler L, et al. Longitudinal neurocognitive and Pulmonological profile of long COVID-19: protocol for the COVIMMUNE-Clin study. JMIR Res Protoc. 2021;10(11):e30259. https://doi.org/10.2196/30259.
Article
Google Scholar
Taquet M, Geddes JR, Husain M, et al. 6-month neurological and psychiatric outcomes in 236,379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psych. 2021;8:416–27. https://doi.org/10.1016/s2215-0366(21)00084-5.
Article
Google Scholar
Bliddal S, Banasik K, Pedersen OB, et al. Active and persistent symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Sci Rep. 2021;11:13153. https://doi.org/10.1038/s41598-021-92045-x.
Article
CAS
Google Scholar
Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of SARS-CoV-2 infection. Nat Med. 2022;28(11):2406–15. https://doi.org/10.1038/s41591-022=02001-z.
Article
CAS
Google Scholar
Tsivgoulis G, Palaiodimon L, Katsanos AH, et al. Neurological manifestations, and implications of COVID-19 pandemic. Ther Adv Neurol Disord. 2020;13:32036. https://doi.org/10.1177/1756286420932036.
Article
CAS
Google Scholar
Harapan BN, Yoo HJ. Neurological symptoms, manifestations and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J Neurol. 2021;268(9):3059–71. https://doi.org/10.1007/s00415-021-104069.
Article
CAS
Google Scholar
Patterson RW, Brown RL, Benjamin L, et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020;143(10):3104–20. https://doi.org/10.1093/brain/awaa240.
Article
Google Scholar
Ali ST, Kang AK, Patel TR, et al. Evolution of neurologic symptoms in non-hospitalized COVID-19 “long haulers”. Ann Clin Transl Neurol. 2022;9(7):950–61. https://doi.org/10.1002/acn3.5157.
Article
CAS
Google Scholar
Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2. Nat Med. 2022;28(7):1461–7. https://doi.org/10.1038/s41591-022-01840-0.
Article
CAS
Google Scholar
Hanson KE, Caliendo AM, Arias CA, et al. Infectious Diseases Society of America guidelines on the diagnosis of COVID-19: serologic testing. Clin Inf Dis. 2020:ciaa:1343. https://doi.org/10.1093/cid/ciaa:1343.
Brewer JB, Magela S, Airriess C, et al. Fully automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer’s disease. AJNR Am J Neuroradiol. 2009;30:578–80. https://doi.org/10.3174/ajnr.A1402.
Article
CAS
Google Scholar
Brewer JB. Fully automated volumetric MRI with normative ranges: translation to clinical practice. Behav Neurol. 2009;21:21–8. https://doi.org/10.1155/2009/61658.
Article
CAS
Google Scholar
Longhurst JK, Wise MA, Krist DJ, et al. Brain volumes and dual task performance correlates among individuals with cognitive impairment: a retrospective analysis. J Neural Transm (Vienna). 2020;127(7):1057–71. https://doi.org/10.1007/s00702-020-02199-7.
Article
Google Scholar
Ross DE, Seabaugh J, Seabaugh JM, et al. Updated review of the evidence supporting the medical and legal use of NeuroQuant® and NeuroGage® in patients with traumatic brain injury. Front Hum Neurosci. 2022;16:715807. https://doi.org/10.3389/fnhum.2022.715807.
Article
Google Scholar
Bonner-Jackson A, Mahmoud S, Miller J, Banks SJ. Verbal and non-verbal memory and hippocampal volumes in a memory clinic population. Alzheimers Res Ther. 2015;7(1):61–71. https://doi.org/10.1186/s13195-015-0147-9.
Article
Google Scholar
Ochs AL, Ross DE, Zannoni MD, Abildskov TJ, Bigler ED. Alzheimer disease neuroimaging initiative. Comparison of automated brain volume measures obtained with NeuroQuant and FreeSurfer. J Neuroimaging. 2015;25(5):721–7. https://doi.org/10.1111/jon.12229.
Article
Google Scholar
Ross DE, Ochs AL, Seabaugh JM, Shrader CR. Alzheimer’s Disease Neuroimaging Initiative. Man versus machine: comparison of radiologists’ interpretations and NeuroQuant® volumetric analysis of brain MRIs in patients with traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2013;25(1):32–9. https://doi.org/10.1176/appi.neuropsych.11120377.
Article
Google Scholar
Bash S, Wang L, Airriess C, et al. Deep learning enables 60% accelerated volumetric brain MRI while preserving quantitative performance: a prospective, multicenter, multireader trial. AJNR Am J Neuroradiol. 2021;42(12):2130–7. https://doi.org/10.3174/ajnr.A7358.
Article
CAS
Google Scholar
Rothstein TL. Grey matter matters: a longitudinal magnetic resonance voxel-based morphometry study of primary progressive multiple sclerosis. Front Neurol. 2020;11:581537. https://doi.org/10.3389/fneuro.2020.581537.
Article
Google Scholar
Venkatesan P. NICE guidelines on long COVID. Lancet Resp Med. 2021;9(2):129. https://doi.org/10.1016/S2213-2600(21)00031-X.
Article
CAS
Google Scholar
Pirlich M, Hӧfer C, Weise CM, et al. Hippocampal grey matter volume in the long-term course after transient global amnesia. Neuroimage Clin. 2021;30:102586. https://doi.org/10.1016/j.nicl.2021.102586.
Article
Google Scholar
Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol. 2015;7(9):a018812. https://doi.org/cshperspect.a0188812.
Farhadian SF, Seilhean D, Spudich S. Neuropathogenesis of acute coronavirus disease. Curr Opin Neurol. 2021;34:417–22. https://doi.org/10.1097/WCO.0000000000000944.
Article
CAS
Google Scholar
Van Essen DC, Donahue CJ, Glasser M, et al. Development and evolution of cerebral and cerebellar cortex. Brain Behav Evol. 2018;91(3):158–69. https://doi.org/10.1159/00048994.
Article
Google Scholar
Chapman LF, Wolff HG. The cerebral hemispheres and the highest integrative functions of man. Arch Neurol. 1959;1:357–424. https://doi.org/10.1001/archneur.1959.03840040001001.
Article
CAS
Google Scholar
Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK biobank. Nature. 2022;604:697–707. https://doi.org/10.1038/s41586-022-04569-5.
Article
CAS
Google Scholar
Duan K, Premi E, Pilotto A, et al. Alterations of frontal-temporal gray matter volume associate with clinical measures of older adults with COVID-19. Neurobiol Stress. 2021;14:100326. https://doi.org/10.1016/j.ynstr.2021.100326.
Article
CAS
Google Scholar
Qin Y, Wu J, Chen T, et al. Long term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J Clin Invest. 2021;131(8):e147329. https://doi.org/10.1172/JCI.147329.
Article
Google Scholar
Sanabria-Diaz G, Etter MM, Melie-Garcia L, et al. Brain cortical alterations in COVID-19 patients with neurological symptoms. Front Neurosci. 2022;16:992165. https://doi.org/10.3389/fnins.2022.992165.
Lu Y, Li X, Geng D, et al. Cerebral micro-structural changes in COVID-19 patients- an MRI based 3 month follow up study. E Clinical Medicine. 2020;25:100484. https://doi.org/10.1016/j.eclinm.2020.100484.
Article
Google Scholar
Tu Y, Zhang Y, Li Y, et al. Post-traumatic stress symptoms in COVID-19 survivors: a self-report and brain imaging follow-up study. Mol Psychiatry. 2021;26:7475–80. https://doi.org/10.1038/s41380-021-01223-w.
Article
CAS
Google Scholar
Besteher B, Machnik M, Troll M, et al. Larger grey matter volumes in neuropsychiatric long-COVID syndrome. Psychiatry Res. 2022;317:114836. https://doi.org/10.1016/j.psychres.2022.114836.
Article
Google Scholar
Hafiz R, Gandhi TK, Mishra S, et al. Higher limbic and basal ganglia volumes in surviving COVID-negative patients and the relations to fatigue. Neuroimage Rep. 2022;2(2):100095. https://doi.org/10.1016/j.ynirp.2022.100095.
Article
Google Scholar
Goehringer F, Bruyere A, Doyen M, et al. Brain 18F-FDG PET imaging in outpatients with post-COVID-19 conditions: findings and associations with clinical characteristics. Eur J Nucl Med Mol Imaging. 2022;2:1–6. https://doi.org/10.1007/s00259-022-06013-2.
Article
Google Scholar
Hugon J, Msika E-F, Queneau M, Farid K, Paquet C. Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex. J Neurol. 2022;269:44–6. https://doi.org/10.1007/s00415-021-10655-x.
Article
CAS
Google Scholar
Guedj E, Campion JY, Dudouet P, et al. 18 F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Mol Imaging. 2021;48(9):2823–33. https://doi.org/10.1007/s00259-021-05215-4.
Article
CAS
Google Scholar
Meyer PT, Hellwig S, Blazhenets G, Hosp JA. Molecular imaging findings on acute and long-term effects of COVID-19 on the brain: a systematic review. J Nucl Med. 2022;63(7):971–80. https://doi.org/10.2967/jnumed.121.263085.
Article
CAS
Google Scholar
Dressing A, Bormann T, Glazhenets G, et al. Neuropsychologic profiles and cerebral glucose metabolism in Neurocognitlve long COVID syndrome. J Nucl Med. 2022;63(7):1058–63. https://doi.org/10.2967/jnumed.121262677.
Article
CAS
Google Scholar
Manca R, De Marco M, Ince P. G., Venneri A. Heterogeneity in regional damage detected by neuroimaging and neuropathological studies in older adults with COVID-19: a cognitive-neuroscience systematic review to inform the long-term impact of the virus on neurocognitive trajectories. Front Aging Neurosci 2021;13:646908. https://doi.org/10.3389/fnagi.2021.646908.
Kim PH, Kim M, Suh CH, et al. Neuroimaging findings in patients with COVID-19: a systematic review and meta-analysis. Korean J Radiol. 2021;22(11):1875–85. https://doi.org/10.3348/kjr.2021.0127.
Article
Google Scholar
Kremer S, Lersy F, de Séze J, et al. Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology. 2020;297(2):E242–51. https://doi.org/10.1148/radiol.2020202222.
Article
Google Scholar
Radmanesh A, Raz Z, Zan E, Deman A, Kaminetzky M. Brain MRI findings in COVID-19: a single academic center experience in the epicenter of disease in the United States. AJNR Amer J Neuroradiol. 2020;41:1179–83. https://doi.org/10.3174/ajnr.A6610.
Article
CAS
Google Scholar
Sawlani V, Scotton S, Nader K, et al. COVID-19-related intracranial imaging findings: a large single-center experience. Clin Radiol. 2021;76(2):108–16. https://doi.org/10.1016/jcrad.2020.09.002.
Fitsiori A, Pugin D, Thieffry C, Lalive P, Vargas MI. COVID-19 is associated with an unusual pattern of brain microbleeds in critically ill patients. J Neuroimaging. 2020;30(5):593–7. https://doi.org/10.1111/jon.12755.
Article
Google Scholar
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382(23):2268–70. https://doi.org/10.1056/NEJMc2008597.
Article
Google Scholar
Larvie M, Lev MH, Hess CP. More on neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382:e110. https://doi.org/10.1056/NEJMc2015132.
Article
CAS
Google Scholar
Lee M-H, Perl D, Nair G, et al. Microvascular injury in the brains of patients with COVID-19. N Engl J Med. 2021;384:481–3. https://doi.org/10.1093/brain/awac151.
Sklinda K, Dorobek M, Wasilewski PG, et al. Radiologic manifestations of neurologic complications in the course of SARS-CoV-2 infection. Front Neurol. 2021;12:711026. https://doi.org/10.3389/fneur.2021.711026.
Article
Google Scholar
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15. https://doi.org/10.1038/s41591-0210-01283-z.
Article
CAS
Google Scholar
Whittaker A, Anson M, Harky A. Neurological manifestations of COVID- 19. A systematic review and current update. Acta Neurol Scand. 2020;142(1):14–22. https://doi.org/10.1111/ane.13266.
Article
CAS
Google Scholar
Sagris D, Papanikolaou A, Kvernland A, et al. COVID-19 and ischemic stroke. Eur J Neurol. 2021;28(11):3826–36. https://doi.org/10.1111/ene.15008.
Xie Y, Xu E, Bowe B, Al-Aly Z. Long term cardiovascular outcome of COVID-19. Nat Med. 2022;28(3):583–90. https://doi.org/10.1038/s41591-022-01689-3.
Shi H, Zuo Y, Navaz BS, et al. Endothelial cell-activating antibodies in COVID-19. Arthritis Rheumatol 2022;74(7):1132–8. https://doi.org/10.1002/art42094.
Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nature Neurosci. 2020;24:168–75. https://doi.org/10.1038/s41593-020-00758-5.
Article
CAS
Google Scholar
Finley JR, Brann DH, Hachem RA, et al. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med. 2022;14:676. https://doi.org/10.1126/Scitranslmed.add0484.
Baig A, Khaleeq A, Ali U, Syeda H, et al. Evidence of COVID 19 virus targeting the central nervous system tissue: distribution host virus interaction and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995–8. https://doi.org/10.1021/acschemneuro.0c00122.
Article
CAS
Google Scholar
Yachou Y, El Idrissi A, Belapasov V, Benali SA. Neuroinvasion, neurotropic and neuroinflammatory effects of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci. 2020;41(10):2657–69. https://doi.org/10.1007/s10072-020-045.
Article
Google Scholar
Reynolds JL, Mahajan SD. SARS-COV2 alters blood brain barrier integrity contributing to neuroinflammation. J Neuroimmune Phamacol. 2021;16:4–6. https://doi.org/10.1007/s11481-020-09975-y.
Article
Google Scholar
Ariño H, Heartshorne R, Michael BD, et al. Neuroimmune disorders in COVID-19. J Neurol. 2022;269(6):2827–39. https://doi.org/10.1007/s00415-022-11050-w.
Article
CAS
Google Scholar
Wang J, Jiang M, Chen X, Montaner W. Cytokine storm and leucocyte changes in mild versus severe SARS-CoV-2 infection: review of 3339 COVID-19 patients in China and emerging pathogenesis and treatment concepts. J Leukoc Biol. 2020;108(1):17–41. https://doi.org/10.1002/JLB.3COVR0520-272R.
Article
CAS
Google Scholar
Spudich S, Nath A. Nervous system consequences of COVID-19. Science. 2022;375:267–9. https://doi.org/10.1126/science.abm2052.
Article
CAS
Google Scholar
Edén A, Grahm A, Bremell D, et al. Viral antigen and inflammatory biomarkers in cerebrospinal fluid in patients with COVID-19 infection and neurologic symptoms compared with control participants without infection or neurologic symptoms. JAMA Netw Open. 2022;5(5):e2213253. https://doi.org/10.1001/jamanetworkopen.2022.13253.
Crunfli F, Carregari VC, Veras FP, et al. Morphological, cellular and molecular basis of brain infection in COVID-19 patients. PNAS. 2022;119(35):e2200960119. https://doi.org/10.1073/pnas.2200960119.
Article
CAS
Google Scholar
Samudyata OAO, Malwade S, et al. Sars-CoV-2 promotes microglial synapse elimination in human brain organoids. Mol Psychiatry. 2022;27:3939–50. https://doi.org/10.1038/s41380-022-01786-2.
Article
CAS
Google Scholar
Reiken S, Sitttenfeld L, Dridi H, Liu Y, Xigoping X, Marks AR. Alzheimer’s-like signaling in brains of COVID-19. Alz Dement. 2022;18(5):955–65. https://doi.org/10.1002/alz.12558.
Article
CAS
Google Scholar
Shen W-B, Logue J, Yang P, et al. SARS-CoV-2 invades cognitive centers of the brain and induces Alzheimer’s like neuropathology. bioRxiv. 2022:01.31.478476. https://doi.org/10.1101/2022.01.31.478476.
Fullard JF, Lee H-C, Voloudakis G, et al. Single-nucleus transcriptase analysis of human brain immune response in patients with severe COVID-19. Genome Med. 2021;13:118. https://doi.org/10.1186/s13073-021-00933-8.
Lee MH, Perl DP, Steiner J, et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022;145(7):2555–68. https://doi.org/10.1093/brain/awac151.
Article
Google Scholar
Thakur KT, Miller EH, Glendining MD, et al. COVID-19 neuropathology at Columbia University Irving medical center/New York Presbyterian hospital. Brain. 2021;144(9):2696–708. https://doi.org/10.1093/brain/awab148.
Article
Google Scholar
Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID 19 in Germany; a post-mortem case series. Lancet Neurol. 2020;19(11):919–29. https://doi.org/10.1016/S1474-4422(20)3.
Article
CAS
Google Scholar
Deigendesch N, Sironi L, Kutza M, et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 2020;140:583–6. https://doi.org/10.1007/s00401-020-02213-y.
Article
CAS
Google Scholar
Beghi E, Giussari G, Westemberg E, et al. Acute and post-acute neurological manifestations of COVID 19: present findings, critical appraisal, and future directions. J Neurol. 2022;269(5):2265–74. https://doi.org/10.1007/s00415-021-10848-4.
Article
CAS
Google Scholar
Derakshan M, Caramanos Z, Giacomini PS, et al. Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. NeuroImage. 2010;52:1261–7. https://doi.org/10.1016/j.neuroimage.2010.05.029.
Article
Google Scholar
Brinkmann BH, Guragain H, Kenney-Jung D, et al. Segmental errors and intertest reliability in automated and manually traced hippocampal volumes. Ann Clin Transl Neurol. 2019;6(9):1807–14. https://doi.org/10.1002/acn3.50885.
Article
Google Scholar
Khan AR, Wang L, Beg MF. Voxel- and tensor-based morphometry (UVTBM) using registration confidence. Neurobiol Aging. 2015;36(S1):S60–8. https://doi.org/10.1016/j.neurobiolaging.2014.04.036.
Article
Google Scholar
Callaert DV, Ribbens A, Maes F, Swinnen SP, Wenderoth N. Assessing age-related gray matter decline with voxel-based morphometry depends significantly on segmentation and normalization procedures. Front Aging Neurosci. 2014;6:124. https://doi.org/10.3389/fnagi.2014.00124.
Article
Google Scholar
Barnes J, Ridgeway GR, Barlett J, et al. Head size, age and gender adjustment in MRI studies: a necessary nuisance? NeuroImage. 2010;53(4):1244–53. https://doi.org/10.1016/j.neuroimage.2010.06.025.
Article
Google Scholar