Huang L, Wang G. The effects of different factors on the behavior of neural stem cells. Stem Cells Int. 2017;2017:9497325. https://doi.org/10.1155/2017/9497325.
Article
CAS
Google Scholar
Gogel S, Gubernator M, Minger SL. Progress and prospects: stem cells and neurological diseases. Gene Ther. 2011;18(1):1–6. https://doi.org/10.1038/gt.2010.130.
Article
CAS
Google Scholar
Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364–70. https://doi.org/10.1002/1097-4547(20000815)61:43.0.CO;2-C.
Liu X, Fu X, Dai G, Wang X, Zhang Z, Cheng H, et al. Comparative analysis of curative effect of bone marrow mesenchymal stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy. J Transl Med. 2017;15(1):48. https://doi.org/10.1186/s12967-017-1149-0.
Article
Google Scholar
Song CG, Zhang YZ, Wu HN, Cao XL, Guo CJ, Li YQ, et al. Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res. 2018;13(7):1294–304. https://doi.org/10.4103/1673-5374.235085.
Pan K, Deng L, Chen P, Peng Q, Pan J, Wu Y, et al. Safety and feasibility of repeated intrathecal allogeneic bone marrow-derived mesenchymal stromal cells in patients with neurological diseases. Stem Cells Int. 2019;2019:8421281. https://doi.org/10.1155/2019/8421281.
Article
CAS
Google Scholar
Nguyen TL, Nguyen HP, Nguyen TK. The effects of bone marrow mononuclear cell transplantation on the quality of life of children with cerebral palsy. Health Qual Life Outcomes. 2018;16(1):164. https://doi.org/10.1186/s12955-018-0992-x.
Article
Google Scholar
Cox CS Jr, Hetz RA, Liao GP, Aertker BM, Ewing-Cobbs L, Juranek J, et al. Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem Cells. 2017;35(4):1065–79. https://doi.org/10.1002/stem.2538.
Article
CAS
Google Scholar
Sharma AK, Sane HM, Kulkarni PP, Gokulchandran N, Biju H, Badhe PB. Autologous bone marrow mononuclear cell transplantation in patients with chronic traumatic brain injury- a clinical study. Cell Regen. 2020;9(1):3. https://doi.org/10.1186/s13619-020-00043-7.
Article
Google Scholar
Nguyen LT, Nguyen AT, Vu CD, Ngo DV, Bui AV. Outcomes of autologous bone marrow mononuclear cells for cerebral palsy: an open label uncontrolled clinical trial. BMC Pediatr. 2017;17(1):104. https://doi.org/10.1186/s12887-017-0859-z.
Article
Google Scholar
Longo M, Hankins GD. Defining cerebral palsy: pathogenesis, pathophysiology and new intervention. Minerva Ginecol. 2009;61(5):421–9.
CAS
Google Scholar
Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27(8):1529–40. https://doi.org/10.1089/neu.2010.1358.
Article
Google Scholar
Purandare C, Shitole DG, Belle V, Kedari A, Bora N, Joshi M. Therapeutic potential of autologous stem cell transplantation for cerebral palsy. Case Rep Transplant. 2012;2012:825289. https://doi.org/10.1155/2012/825289.
Article
Google Scholar
Wang X, Cheng H, Hua R, Yang J, Dai G, Zhang Z, et al. Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy. 2013;15(12):1549–62.
Article
Google Scholar
Sharma A, Sane H, Gokulchandran N, Kulkarni P, Gandhi S, Sundaram J, et al. A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Stem Cells Int. 2015;905874(10):18.
Google Scholar
Chen G, Wang Y, Xu Z, Fang F, Xu R, Hu X, et al. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013;11(21):1479–5876.
Google Scholar
Bansal H, Singh L, Verma P, Agrawal A, Leon J, Sundell IB, et al. Administration of Autologous Bone Marrow-Derived Stem Cells for treatment of cerebral palsy patients: a proof of concept. J Stem Cells. 2016;11(1):37–49.
CAS
Google Scholar
Cox CS Jr, Baumgartner JE, Harting MT, Worth LL, Walker PA, Shah SK, et al. Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery. 2011;68(3):588–600. https://doi.org/10.1227/NEU.0b013e318207734c.
Article
Google Scholar
Tian C, Wang X, Wang X, Wang L, Wang X, Wu S, et al. Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture. Exp Clin Transplant. 2013;11(2):176–81. https://doi.org/10.6002/ect.2012.0053.
Article
Google Scholar
Sharma A, Sane H, Kulkarni P, Yadav J, Gokulchandran N, Biju H, et al. Cell therapy attempted as a novel approach for chronic traumatic brain injury - a pilot study. Springerplus. 2015;4:26. https://doi.org/10.1186/s40064-015-0794-0.
Article
Google Scholar
Xinquang. Stem cell therapy for traumatic brain injury: a progress update. Ann Neurol Surg. 2018;2(1):1008.
Google Scholar
Chang YS, Choi SJ, Ahn SY, Sung DK, Sung SI, Yoo HS, et al. Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PLoS One. 2013;8(1):e52419. https://doi.org/10.1371/journal.pone.0052419.
Article
CAS
Google Scholar
Corrigan JD, Smith-Knapp K, Granger CV. Validity of the functional independence measure for persons with traumatic brain injury. Arch Phys Med Rehabil. 1997;78(8):828–34. https://doi.org/10.1016/s0003-9993(97)90195-7.
Article
CAS
Google Scholar
Sharma A, Gokulchandran N, Chopra G, Kulkarni P, Lohia M, Badhe P, et al. Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transplant. 2012;21(Suppl 1):S79–90. https://doi.org/10.3727/096368912X633798.
Article
Google Scholar
Chen G, Wang Y, Xu Z, Fang F, Xu R, Wang Y, et al. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013;11:21. https://doi.org/10.1186/1479-5876-11-21.
Article
CAS
Google Scholar
Sharma A, Sane H, Gokulchandran N, Kulkarni P, Gandhi S, Sundaram J, et al. A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Stem Cells Int. 2015;2015:905874. https://doi.org/10.1155/2015/905874.
Article
Google Scholar
Thanh LN, Trung KN, Duy CV, Van DN, Hoang PN, Phuong ANT, et al. Improvement in gross motor function and muscle tone in children with cerebral palsy related to neonatal icterus: an open-label, uncontrolled clinical trial. BMC Pediatr. 2019;19(1):290. https://doi.org/10.1186/s12887-019-1669-2.
Article
Google Scholar
Dedeepiya VD, Rao YY, Jayakrishnan GA, Parthiban JK, Baskar S, Manjunath SR, et al. Index of CD34+ cells and mononuclear cells in the bone marrow of spinal cord injury patients of different age groups: a comparative analysis. Bone Marrow Res. 2012;2012:787414. https://doi.org/10.1155/2012/787414.
Article
Google Scholar
Liem NT, Chinh VD, Phuong DTM, Van Doan N, Forsyth NR, Heke M, et al. Outcomes of bone marrow-derived mononuclear cell transplantation for patients in persistent vegetative state after drowning: report of five cases. Front Pediatr. 2020;8:564. https://doi.org/10.3389/fped.2020.00564.
Article
Google Scholar
Liem NT, Huyen TL, Huong LT, Doan NV, Anh BV, Anh NTP, et al. Outcomes of bone marrow mononuclear cell transplantation for neurological sequelae due to intracranial hemorrhage incidence in the neonatal period: report of four cases. Front Pediatr. 2019;7:543. https://doi.org/10.3389/fped.2019.00543.
Article
Google Scholar
Chernykh ER, Shevela EY, Leplina OY, Tikhonova MA, Ostanin AA, Kulagin AD, et al. Characteristics of bone marrow cells under conditions of impaired innervation in patients with spinal trauma. Bull Exp Biol Med. 2006;141(1):117–20. https://doi.org/10.1007/s10517-006-0109-0.
Article
CAS
Google Scholar
Harting MT, Cox CS, Day MC, Walker P, Gee A, Brenneman MM, et al. Bone marrow-derived mononuclear cell populations in pediatric and adult patients. Cytotherapy. 2009;11(4):480–4. https://doi.org/10.1080/14653240902960452.
Article
CAS
Google Scholar
Mohamadnejad M, Namiri M, Bagheri M, Hashemi SM, Ghanaati H, Zare Mehrjardi N, et al. Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World J Gastroenterol. 2007;13(24):3359–63. https://doi.org/10.3748/wjg.v13.i24.3359.
Article
CAS
Google Scholar
Hernandez P, Cortina L, Artaza H, Pol N, Lam RM, Dorticos E, et al. Autologous bone-marrow mononuclear cell implantation in patients with severe lower limb ischaemia: a comparison of using blood cell separator and Ficoll density gradient centrifugation. Atherosclerosis. 2007;194(2):e52–6. https://doi.org/10.1016/j.atherosclerosis.2006.08.025.
Article
CAS
Google Scholar
Ema H, Suda T, Miura Y, Nakauchi H. Colony formation of clone-sorted human hematopoietic progenitors. Blood. 1990;75(10):1941–6.
Article
CAS
Google Scholar
Van E, Bender J, Lee W, Schilling M, Smith A, Smith S, et al. Harvesting, characterization, and culture of CD34+ cells from human bone marrow, peripheral blood, and cord blood. Blood Cells. 1994;20(2–3):411–23.
Google Scholar
Sutherland DR, Keating A, Nayar R, Anania S, Stewart AK. Sensitive detection and enumeration of CD34+ cells in peripheral and cord blood by flow cytometry. Exp Hematol. 1994;22(10):1003–10.
CAS
Google Scholar
Scott MA, Gordon MY. In search of the haemopoietic stem cell. Br J Haematol. 1995;90(4):738–43. https://doi.org/10.1111/j.1365-2141.1995.tb05190.x.
Article
CAS
Google Scholar
Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med. 1997;337(6):373–81. https://doi.org/10.1056/nejm199708073370602.
Article
CAS
Google Scholar
Fritsch G, Stimpfl M, Kurz M, Printz D, Buchinger P, Fischmeister G, et al. The composition of CD34 subpopulations differs between bone marrow, blood and cord blood. Bone Marrow Transplant. 1996;17(2):169–78.
CAS
Google Scholar
Bender JG, To LB, Williams S, Schwartzberg LS. Defining a therapeutic dose of peripheral blood stem cells. J Hematother. 1992;1(4):329–41. https://doi.org/10.1089/scd.1.1992.1.329.
Article
CAS
Google Scholar
Chen L, Huang H, Xi H, Xie Z, Liu R, Jiang Z, et al. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial. Cell Transplant. 2010;19(2):185–91. https://doi.org/10.3727/096368910X492652.
Article
Google Scholar
Mancias-Guerra C, Marroquin-Escamilla AR, Gonzalez-Llano O, Villarreal-Martinez L, Jaime-Perez JC, Garcia-Rodriguez F, et al. Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy. 2014;16(6):810–20. https://doi.org/10.1016/j.jcyt.2014.01.008.
Article
CAS
Google Scholar
Zhang C, Huang L, Gu J, Zhou X. Therapy for cerebral palsy by human umbilical cord blood mesenchymal stem cells transplantation combined with basic rehabilitation treatment: a case report. Glob Pediatr Health. 2015;2:2333794X15574091. https://doi.org/10.1177/2333794X15574091.
Article
Google Scholar
He S, Luan Z, Qu S, Qiu X, Xin D, Jia W, et al. Ultrasound guided neural stem cell transplantation through the lateral ventricle for treatment of cerebral palsy in children. Neural Regen Res. 2012;7(32):2529–35. https://doi.org/10.3969/j.issn.1673-5374.2012.32.007.
Article
CAS
Google Scholar
Hong BY, Jo L, Kim JS, Lim SH, Bae JM. Factors influencing the gross motor outcome of intensive therapy in children with cerebral palsy and developmental delay. J Korean Med Sci. 2017;32(5):873–9. https://doi.org/10.3346/jkms.2017.32.5.873.
Article
Google Scholar
Kawabori M, Weintraub AH, Imai H, Zinkevych L, McAllister P, Steinberg GK, et al. Cell therapy for chronic TBI: interim analysis of the randomized controlled STEMTRA trial. Neurology. 2021;96(8):e1202–14. https://doi.org/10.1212/WNL.0000000000011450.
Article
CAS
Google Scholar