MS-relapsing patients consecutively referred to the MS Centre of the University of Cagliari/Binaghi Hospital from March to July 2015 were prospectively included in the study. A group of healthy controls working in the Binaghi hospital was also recruited over the same time period. All the subjects signed an informed consent. The inclusion criteria for MS patients were: 18-65 years of age; relapsing remitting course; no relapses and/or steroids intake in the 30 days before enrolment and follow-up evaluation. All patients started a disease-modifying drug (DMD) prior to enrolment. Psychoactive drugs or substances that might interfere with neuropsychological performance were forbidden for both patients and healthy controls.
The ethics committee of the University of Cagliari approved the study.
At baseline, after written informed consent was given, all the subjects underwent neuropsychological assessment, brain MRI, and OCT. These three evaluations were carried out within a maximum period of three months. The evaluations were repeated for a group of MS patients after 12 months ±3. The changes from baseline and follow-up (difference between follow-up and baseline) were calculated for all of the collected MRI, OCT and BICAMS parameters collected.
Gender and age were collected for the whole cohort. In the MS group, the following clinical data were also recorded from medical records by a neurologist with expertise in MS: age at onset; clinical course; expanded disability status scale score (EDSS) at baseline; all DMD from six months before baseline until the end of the study; presence of relapses and steroid therapy in the 30 days before baseline and before the follow-up evaluation; and optic neuritis in the clinical history with indication of the affected eye. Eyes affected by previous optic neuritis were excluded from the statistical analysis.
Neuropsychological evaluation
An expert neuropsychologist (G.F.) performed the neuropsychological evaluation in a quiet room using the BICAMS. This assessment was recently developed by an expert consensus group and included: the Symbol Digit Modality Test (SDMT) to evaluate processing speed (or working memory); the California Verbal Learning Test II (CVLT-II) to evaluate verbal learning and memory; and the Brief Visual Memory Test Revised (BVMT-R) to evaluate visual learning and memory [8, 20]. All tests were considered normal or altered according to the authors’ definition (T score equal or inferior to 35). T score estimations were made using available normative values, with corrections for age, gender and education among the Italian population [20]. Patients were categorized as either cognitive impaired (at least one test altered) or cognitive preserved (no tests altered).
The neuropsychologist was blinded to clinical and radiological findings.
Brain MR acquisition
Brain MRI acquisition and analysis was performed at the Radiology Unit of Binaghi Hospital, Cagliari, Italy. The operator was blinded to the clinical and neuropsychological status of the subjects. The acquisition of brain MRIs was obtained in a single session, using a Siemens Magneton Avanto Scan at 1.5 T. A sagittal survey image was used to identify the anterior and posterior commissures. A dual-echo, turbo spin-echo sequence (repetition time/echo time 1/echo time 2 5 2075/30/90 milliseconds, 256 X 256 matrix, 1 signal average, 250 mm field of view, 50 contiguous 3 mm slices) yielding proton density–weighted and T2-weighted images were acquired in the transverse plane parallel to the line connecting the anterior and posterior commissures. Transverse T1-weighted (T1W) images (repetition time 35 milliseconds; echo time 10 milliseconds; 256 X 256 matrix; 1 signal average; 2,503,250 mm field of view) were acquired, yielding images of 176 contiguous 1 mm-thick slices, oriented to match the proton density of the T2-weighted image.
Brain parenchyma volumes were measured on T1W gradient echo images by using the cross-sectional version of the SIENA (structural image evaluation using normalization of atrophy) software, named SIENAX (part of FSL 4.0: http://www.fmrib.ox.ac.uk/fsl/), a previously described method to estimate global brain volume normalized for head size [21]. MRI analysis allowed for Normalized Brain Volume (NBV), Normalized Grey Matter Volume (NGV), peripheral NGV (p-NGV), and Normalized White Matter Volume (NWV) to be obtained. Lesion refilling was performed as described previously [22].
Longitudinal evaluation of the percentage of brain volume change (PBVC) was performed using SIENA software only in patients not showing new T2 and/or gadolinium enhancing lesions during follow-up. To evaluate annualized PBVC (a-PBVC), the following formula was used: PBVC/months from baseline to follow-up * 12.
Optical coherence tomography
OCT evaluations were performed using a Spectralis SD-OCT (Heidelberg Engineering; Heidelberg, Germania). The machine is able to record ocular movements via a confocal scanning laser ophthalmoscope (TrueTrac ®; Heidelberg Engineering, Heidelberg, Germany). TrueTrac have adapted the software to ocular movements, allowing a correct examination. Eyes that were blind due to reasons other than MS were excluded. The RNFL examination was performed by a ring scan centred on the optic nerve head. The follow-up study was made using the automatic rescan mode. The thickness of global RNFL, the temporal sector (TEMP) and the papillo-macular bundle sector (PMB) were calculated using the machine’s software, and an evaluation of subclinical previous optic neurotis was performed [23]. After excluding previous clinical and subclinical ON, the minimum value between right and left eye for the same subject was entered for analysis. Two neurologists trained in the use of the Spectralis SD-OCT performed all examinations.
Sample size and statistical analysis
At an alpha level of 5%, and for a statistical power of 90%, a minimum of 61 patients was needed to observe a significant correlation of at least 0.4 (threshold between a weak and moderate correlation).
Comparisons between MS patients and healthy controls at baseline were made using independent samples Student’s t-test for age, chi-square test for gender, Mann-Whitney for education, and linear regression models for MRI parameters and SDMT. Regression models were adjusted for age (MRI parameters) and education (SDMT).
Partial correlation coefficients were estimated to assess the cross-sectional correlations at baseline between cognitive functions, RNFL and MRI characteristics. These correlations were adjusted for age, gender, EDSS (MRI and RNFL), and education.
A multivariable model for each MRI volume (considered as dependent variable) was performed to assess the impact, quantified by R2 value, of each RNFL and cognitive functions characteristics on MRI parameters. Only variables for which univariable analysis showed a p value < 0.10 were considered for the multivariable model, and a stepwise approach was adopted to select those included in the model.
One-year changes in MRI, cognitive functions and RNFL were assessed using paired samples Student’s t-test.
To assess the correlations between the longitudinal changes in cognitive functions, RNFL and MRI characteristics, partial correlation coefficients were estimated using delta changes between baseline and one year. Correlations between baseline and longitudinal changes were also assessed. These were adjusted for age, gender, EDSS (MRI and RNFL) and education.
Stata (v.14; StataCorp.) was used for the computation of results.