Khoo TK, Yarnall AJ, Duncan GW, et al. The spectrum of non-motor symptoms in early Parkinson disease. Neurology. 2013;80(3):276–81. https://doi.org/10.1212/WNL.0b013e31827deb74 Epub 2013/01/16. PubMed PMID: 23319473; PubMed Central PMCID: PMCPmc3589180.
Article
PubMed
PubMed Central
Google Scholar
Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8(5):464–74. https://doi.org/10.1016/s1474-4422(09)70068-7 Epub 2009/04/21. PubMed PMID: 19375664.
Article
CAS
PubMed
Google Scholar
Verbaan D, Marinus J, Visser M, et al. Cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(11):1182–7. https://doi.org/10.1136/jnnp.2006.112367 Epub 2007/04/20. PubMed PMID: 17442759; PubMed Central PMCID: PMCPmc2117586.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caviness JN, Driver-Dunckley E, Connor DJ, et al. Defining mild cognitive impairment in Parkinson’s disease. Mov Disord. 2007;22(9):1272–7. https://doi.org/10.1002/mds.21453 Epub 2007/04/07. PubMed PMID: 17415797.
Article
PubMed
Google Scholar
Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord. 2005;20(10):1255–63. https://doi.org/10.1002/mds.20527 Epub 2005/07/26. PubMed PMID: 16041803.
Article
PubMed
Google Scholar
Forsaa EB, Larsen JP, Wentzel-Larsen T, et al. What predicts mortality in Parkinson disease? A prospective population-based long-term study. Neurology. 2010;75:1270–6.
Article
CAS
Google Scholar
Aarsland D, Bronnick K, Williams-Gray C, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75(12):1062–9. https://doi.org/10.1212/WNL.0b013e3181f39d0e Epub 2010/09/22. PubMed PMID: 20855849; PubMed Central PMCID: PMCPmc2942065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajput AH, Voll A, Rajput ML, Robinson CA, Rajput A. Course in Parkinson disease subtypes: a 39-year clinicopathologic study. Neurology. 2009;73(3):206–12. https://doi.org/10.1212/WNL.0b013e3181ae7af1 Epub 2009/07/22. PubMed PMID: 19620608.
Article
CAS
PubMed
Google Scholar
Zuo LJ, Piao YS, Li LX, et al. Phenotype of postural instability/gait difficulty in Parkinson disease: relevance to cognitive impairment and mechanism relating pathological proteins and neurotransmitters. Sci Rep. 2017;7:44872.
Article
CAS
Google Scholar
Uitvlugt MG, Pleskac TJ, Ravizza SM. The nature of working memory gating in Parkinson’s disease: A multi-domain signal detection examination. Cogn Affect Behav Neurosci. 2016;16(2):289–301.
Article
Google Scholar
Safarpour D, Willis AW. Clinical epidemiology, evaluation, and management of dementia in Parkinson disease. Am J Alzheimers Dis Other Dement. 2016;31(7):585–94. https://doi.org/10.1177/1533317516653823 Epub 2016/06/15. PubMed PMID: 27295974.
Article
Google Scholar
Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018). Clin Neurophysiol. 2020;131:474–528.
Article
Google Scholar
Wagle Shukla A, Vaillancourt DE. Treatment and physiology in Parkinson’s disease and dystonia: Using transcranial magnetic stimulation to uncover the mechanisms of action. Curr Neurol Neurosci Rep. 2014;14:449 [PubMed: 2477110.
Article
Google Scholar
Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol. 2011;93:59–98.
Article
Google Scholar
Ridding MC, Rothwell JC. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci. 2007;8(7):559–67. https://doi.org/10.1038/nrn2169 Epub 2007/06/15. PubMed PMID: 17565358.
Article
CAS
PubMed
Google Scholar
Guse B, Falkai P, Wobrock T. Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm (Vienna). 2010;117(1):105–22. https://doi.org/10.1007/s00702-009-0333-7 Epub 2009/10/28. PubMed PMID: 19859782; PubMed Central PMCID: PMCPmc3085788.
Article
Google Scholar
Jahanshahi M. Other cognitive functions. Magnetic stimulation in clinical (2005). Neurophysiology. 2005:281–302. https://doi.org/10.1016/B978-0-7506-7373-0.50022-5.
Srovnalova H, Marecek R, Rektorova I. The role of the inferior frontal gyri in cognitive processing of patients with Parkinson’s disease: a pilot rTMS study. Mov Disord. 2011;26(8):1545–8. https://doi.org/10.1002/mds.23663 Epub 2011/04/12. PubMed PMID: 21480374.
Article
PubMed
Google Scholar
Rektorova I, Megova S, Bares M, Rektor I. Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: a pilot study of seven patients. J Neurol Sci. 2005;229-230:157–61. https://doi.org/10.1016/j.jns.2004.11.021 Epub 2005/03/12. PubMed PMID: 15760635.
Article
CAS
PubMed
Google Scholar
Pascual-Leone A, Valls-Sol J, Wassermann EM, et al. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994;(4):847–58. https://doi.org/10.1093/brain/117.4.847.
Anderkova L, Rektorova I. Cognitive effects of repetitive transcranial magnetic stimulation in patients with neurodegenerative diseases – clinician’s perspective. J Neurol Sci. 2014;339(1–2):15–25. https://doi.org/10.1016/j.jns.2014.01.037 Epub 2014/02/18. PubMed PMID: 24530170.
Article
PubMed
Google Scholar
Rektorova I, Anderkova L. Non-invasive brain stimulation and implications for non-motor symptoms in Parkinson’s disease. Int Rev Neurobiol. 2017;134:1091–110. https://doi.org/10.1016/bs.irn.2017.05.009 Epub 2017/08/15. PubMed PMID: 28805565.
Article
PubMed
Google Scholar
Dinkelbach L, Brambilla M, Manenti R, Brem AK. Non-invasive brain stimulation in Parkinson’s disease: exploiting crossroads of cognition and mood. Neurosci Biobehav Rev. 2017;75:407–18. https://doi.org/10.1016/j.neubiorev.2017.01.021 Epub 2017/01/26. PubMed PMID: 28119070.
Article
PubMed
Google Scholar
Randver R. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex to alleviate depression and cognitive impairment associated with Parkinson’s disease: a review and clinical implications. J Neurol Sci. 2018;393:88–99. https://doi.org/10.1016/j.jns.2018.08.014.
Article
PubMed
Google Scholar
Lawrence BJ, Gasson N, Bucks RS, Troeung L, Loftus AM. Cognitive training and non-invasive brain stimulation for cognition in Parkinson's disease: a meta-analysis. Neurorehabil Neural Repair. 2017;31(7):597–608. https://doi.org/10.1177/1545968317712468 Epub 2017/06/07. PubMed PMID: 28583011.
Article
PubMed
Google Scholar
Goodwill AM, Lum Jarrad AG, Hendy AM, et al. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson's disease: a systematic review and meta-analysis. Sci Rep. 2017;7:14840.
Article
Google Scholar
Cohen OS, Rigbi A, Yahalom G, et al. Repetitive deep TMS for Parkinson disease: a 3-month double-blind, randomized sham-controlled study. J Clinical Neurophysiol. 2018;35(2):159–65. https://doi.org/10.1097/wnp.0000000000000455 Epub 2018/01/27. PubMed PMID: 29373395.
Article
Google Scholar
Buard I, Sciacca DM, Martin CS, et al. Transcranial magnetic stimulation does not improve mild cognitive impairment in Parkinson’s disease. Mov Disord. 2018;33(3):489–91. https://doi.org/10.1002/mds.27246 Epub 2017/11/28. PubMed PMID: 29178298; PubMed Central PMCID: PMCPmc5839956.
Article
PubMed
Google Scholar
Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med Res Methodol. 2001;1:2. https://doi.org/10.1186/1471-2288-1-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boggio PS, Fregni F, Bermpohl F, et al. Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov Disord. 2005;20(9):1178–84. https://doi.org/10.1002/mds.20508.
Article
PubMed
Google Scholar
Cardoso EF, Fregni F, Martins MF, et al. rTMS treatment for depression in Parkinson’s disease increases BOLD responses in the left prefrontal cortex. Int J Neuropsychopharmacol. 2008;11(2):173–83. https://doi.org/10.1017/S1461145707007961.
Article
PubMed
Google Scholar
Epstein CM, Evatt ML, Agnes F, et al. An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin Neurophysiol. 2007;118(10):2189–94. https://doi.org/10.1016/j.clinph.2007.07.010.
Article
PubMed
PubMed Central
Google Scholar
Benninger DH, Lomarev M, Wassermann EM, et al. Safety study of 50 Hz repetitive transcranial magnetic stimulation in patients with Parkinson's disease. Clin Neurophysiol. 2009;120(4):809–15. https://doi.org/10.1016/j.clinph.2009.01.012.
Article
PubMed
PubMed Central
Google Scholar
Furukawa T, Izumi SI, Toyokura M, Masakado Y. Effects of low-frequency repetitive transcranial magnetic stimulation in Parkinson’s disease. Tokai J Exp Clin Med. 2009;34(3):63–71.
PubMed
Google Scholar
Sedlackova S, Rektorova I, Srovnalova H, Rektor I. Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson's disease. J Neural Transm (Vienna). 2009;116(9):1093–101. https://doi.org/10.1007/s00702-009-0259-0.
Article
Google Scholar
Pal E, Nagy F, Aschermann Z, Balazs E, Kovacs N. The impact of left prefrontal repetitive transcranial magnetic stimulation on depression in Parkinson’s disease: a randomized, double-blind, placebo-controlled study. Mov Disord. 2010;25(14):2311–7. https://doi.org/10.1002/mds.23270.
Article
PubMed
Google Scholar
Kimura H, Kurimura M, Kurokawa K, et al. A comprehensive study of repetitive transcranial magnetic stimulation in Parkinson’s disease. ISRN Neurol. 2011:845453. https://doi.org/10.5402/2011/845453.
Srovnalova H, Marecek R, Kubikova R, Rektorova I. The role of the right dorsolateral prefrontal cortex in the tower of London task performance: repetitive transcranial magnetic stimulation study in patients with Parkinson’s disease. Exp Brain Res. 2012;223(2):251–7. https://doi.org/10.1007/s00221-012-3255-9.
Article
CAS
PubMed
Google Scholar
Chang WH, Kim MS, Park E, et al. Effect of dual-mode and dual-site non-invasive brain stimulation on freezing of gait in patients with Parkinson disease. Arch Phys Med Rehabil. 2017;98(7):1283–90. https://doi.org/10.1016/j.apmr.2017.01.011.
Article
PubMed
Google Scholar
Dagan M, Herman T, Mirelman A, Giladi N, Hausdorff JM. The role of the prefrontal cortex in freezing of gait in Parkinson’s disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Exp Brain Res. 2017;235(8):2463–72. https://doi.org/10.1007/s00221-017-4981-9.
Article
PubMed
Google Scholar
Duchek J, Cheney M, Ferraro F, Storandt M. Paired associate learning in senile dementia of the Alzheimer type. Arch Neurol. 1991;48:1038–40. https://doi.org/10.1001/archneur.1991.00530220054019.
Article
CAS
PubMed
Google Scholar
Cicerone K, Dahlberg C, Kalmar K, et al. Evidence-based cognitive rehabilitation: recommendations for clinical practice. Arch Phys Med Rehabil. 2000;81:1596–615. https://doi.org/10.1053/apmr.2000.19240.
Article
CAS
PubMed
Google Scholar
Cicerone K, Dahlberg C, Malec J, et al. Evidence-based cognitive rehabilitation: updated review of the literature from 1998 through 2002. Arch Phys Med Rehabil. 2005;86:1681–92. https://doi.org/10.1016/j.apmr.2005.03.024.
Article
PubMed
Google Scholar
Forbes CE, Poore JC, Krueger F, et al. The role of executive function and the dorsolateral prefrontal cortex in the expression of neuroticism and conscientiousness. Soc Neurosci. 2014;9(2):139–51. https://doi.org/10.1080/17470919.2013.871333.
Article
PubMed
Google Scholar
Liao X, Li G, Wang A, et al. Repetitive transcranial magnetic stimulation as an alternative therapy for cognitive impairment in Alzheimer's disease: a meta-analysis. J Alzheimers Dis. 2015;48(2):463–72. https://doi.org/10.3233/jad-150346 Epub 2015/09/25. PubMed PMID: 26402010.
Article
PubMed
Google Scholar
Monsch AU, Bondi MW, Salmon DP, et al. Clinical validity of the Mattis dementia rating scale in detecting dementia of the Alzheimer type. A double cross-validation and application to a community-dwelling sample. Arch Neurol. 1995;52(9):899–904 Epub 1995/09/01. PubMed PMID: 7661728.
Article
CAS
Google Scholar
Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society task force guidelines. Mov Disord. 2012;27:349–56.
Article
Google Scholar
Moser DJ, Jorge RE, Manes F, Paradiso S, Benjamin ML, Robinson RG. Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology. 2002;58(8):1288–90 Epub 2002/04/24. PubMed PMID: 11971103.
Article
CAS
Google Scholar
Dalrymple-Alford JC, Livingston L, MacAskill MR, et al. Characterizing mild cognitive impairment in Parkinson’s disease. Mov Disord. 2011;26(4):629–36. https://doi.org/10.1002/mds.23592 Epub 2011/02/03. PubMed PMID: 21287603.
Article
PubMed
Google Scholar
Mamikonyan E, Moberg PJ, Siderowf A, et al. Mild cognitive impairment is common in Parkinson’s disease patients with normal Mini-Mental State Examination (MMSE) scores. Parkinsonism Relat Disord. 2009;15(3):226–31. https://doi.org/10.1016/j.parkreldis.2008.05.006 Epub 2008/07/04. PubMed PMID: 18595765; PubMed Central PMCID: PMCPmc2668811.
Article
PubMed
Google Scholar
Sollinger AB, Goldstein FC, Lah JJ, Levey AI, Factor SA. Mild cognitive impairment in Parkinson’s disease: subtypes and motor characteristics. Parkinsonism Relat Disord. 2010;16(3):177–80. https://doi.org/10.1016/j.parkreldis.2009.11.002 Epub 2009/11/27. PubMed PMID: 19939721; PubMed Central PMCID: PMCPmc3622717.
Article
PubMed
Google Scholar
Helmich RC, Siebner HR, Bakker M, Munchau A, Bloem BR. Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson’s disease. J Neurol Sci. 2006;248(1–2):84–96. https://doi.org/10.1016/j.jns.2006.05.009 Epub 2006/06/24. PubMed PMID: 16793065.
Article
PubMed
Google Scholar
Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. Neuroimage. 2001;13(6):1008.
Article
Google Scholar
Siebner HR, Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res. 2003;148(1):1–16. https://doi.org/10.1007/s00221-002-1234-2 Epub 2002/12/13. PubMed PMID: 12478392.
Article
PubMed
Google Scholar
Conca A, Peschina W, Konig P, Fritzsche H, Hausmann A. Effect of chronic repetitive transcranial magnetic stimulation on regional cerebral blood flow and regional cerebral glucose uptake in drug treatment-resistant depressives. A brief report. Neuropsychobiology. 2002;45(1):27–31. https://doi.org/10.1159/000048669 Epub 2002/01/23. PubMed PMID: 11803238.
Article
CAS
PubMed
Google Scholar
Xie J, Chen J, Wei Q. Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: a meta-analysis of stimulus parameter effects. Neurol Res. 2013;35(10):1084–91. https://doi.org/10.1179/1743132813Y.0000000245.
Article
PubMed
Google Scholar
Teng S, Guo Z, Peng H, et al. High-frequency repetitive transcranial magnetic stimulation over the left DLPFC for major depression: session-dependent efficacy: a meta-analysis. Eur Psychiatry. 2017;41:75–84. https://doi.org/10.1016/j.eurpsy.2016.11.002.
Article
CAS
PubMed
Google Scholar
Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Archives Neurol. 2009;66(12):1447–55. https://doi.org/10.1001/archneurol.2009.266 Epub 2009/12/17. PubMed PMID: 20008648; PubMed Central PMCID: PMCPmc3081688.
Article
Google Scholar
Litvan I, Aarsland D, Adler CH, et al. MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord. 2011;26(10):1814–24. https://doi.org/10.1002/mds.23823 Epub 2011/06/11. PubMed PMID: 21661055; PubMed Central PMCID: PMCPmc3181006.
Article
PubMed
PubMed Central
Google Scholar
Bagherzadeh Y, Khorrami A, Zarrindast MR, Shariat SV, Pantazis D. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Exp Brain Res. 2016;234(7):1807–18. https://doi.org/10.1007/s00221-016-4580-1.
Article
PubMed
Google Scholar
Yang Z, Zhao X, Wang C, Chen H, Zhang Y. Neuroanatomic correlation of the post-stroke aphasias studied with imaging. Neurol Res. 2008;30(4):356–60. https://doi.org/10.1179/174313208X300332.
Article
PubMed
Google Scholar
Ross E. Cerebral localization of functions and the neurology of language: fact versus fiction or is it something else? Neuroscientist. 2010;16(3):222–43. https://doi.org/10.1177/1073858409349899.
Article
PubMed
Google Scholar
Zimmerer V, Watson S, Turkington D, Ferrier I, Hinzen W. Deictic and propositional meaning-new perspectives on language in schizophrenia. Front Psychiatry. 2017;8:17. https://doi.org/10.3389/fpsyt.2017.00017.
Article
PubMed
PubMed Central
Google Scholar
Ikkai A, Curtis C. Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia. 2011;49(6):1428–34. https://doi.org/10.1016/j.neuropsychologia.2010.12.020.
Article
PubMed
Google Scholar
Ipata A, Gee A, Bisley J, Goldberg M. Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals. Exp Brain Res. 2009;192(3):479–88. https://doi.org/10.1007/s00221-008-1557-8.
Article
PubMed
Google Scholar
Halligan P, Fink G, Marshall J, Vallar G. Spatial cognition: evidence from visual neglect. Trends Cogn Sci. 2003;7(3):125–33 PMID: 12639694.
Article
Google Scholar
Hilgetag CC, Kötter R, Théoret H, Claßen J, Wolters A, Pascual-Leone A. Bilateral competitive processing of visual spatial attention in the human brain. Neurocomputing. 2003;52(3):793–8. https://doi.org/10.1016/S0925-2312(02)00776-2.
Article
Google Scholar
Strafella AP, Ko JH, Monchi O. Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. Neuroimage. 2006;31(4):1666–72. https://doi.org/10.1016/j.neuroimage.2006.02.005.
Article
PubMed
PubMed Central
Google Scholar
Kim JY, Chung EJ, Lee WY, et al. Therapeutic effect of repetitive transcranial magnetic stimulation in Parkinson’s disease: analysis of [11C] raclopride PET study. Mov Disord. 2008;23(2):207–11. https://doi.org/10.1002/mds.21787.
Article
PubMed
Google Scholar