Lauze M, Daneault JF, Duval C. The effects of physical activity in Parkinson's disease: a review. J Parkinsons Dis. 2016;6(4):685–98.
Article
PubMed
PubMed Central
Google Scholar
Paul KC, Chuang YH, Shih IF, et al. The association between lifestyle factors and Parkinson’s disease progression and mortality. Mov Disord. 2019;34(1):58–66.
Article
PubMed
PubMed Central
Google Scholar
Crizzle AM, Newhouse IJ. Is physical exercise beneficial for persons with Parkinson's disease? Clin J Sport Med. 2006;16(5):422–5.
Article
PubMed
Google Scholar
Keus SH, Bloem BR, Hendriks EJ, Bredero-Cohen AB, Munneke M, Practice recommendations development G. Evidence-based analysis of physical therapy in Parkinson's disease with recommendations for practice and research. Mov Disord. 2007;22(4):451–60 quiz 600.
Article
PubMed
Google Scholar
Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL. The effectiveness of exercise interventions for people with Parkinson's disease: a systematic review and meta-analysis. Mov Disord. 2008;23(5):631–40.
Article
PubMed
Google Scholar
Tomlinson CL, Patel S, Meek C, et al. Physiotherapy versus placebo or no intervention in Parkinson's disease. Cochrane Database Syst Rev. 2013;(9):CD002817.
Mehrholz J, Kugler J, Storch A, Pohl M, Elsner B, Hirsch K. Treadmill training for patients with Parkinson's disease. Cochrane Database Syst Rev. 2015;(8):CD007830.
Mak MK, Wong-Yu IS, Shen X, Chung CL. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol. 2017;13(11):689–703.
Article
PubMed
Google Scholar
Silveira CRA, Roy EA, Intzandt BN, Almeida QJ. Aerobic exercise is more effective than goal-based exercise for the treatment of cognition in Parkinson's disease. Brain Cogn. 2018;122:1–8.
Article
PubMed
Google Scholar
Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008;(3):CD005381.
da Silva FC, Iop RDR, de Oliveira LC, et al. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: a systematic review of randomized controlled trials of the last 10 years. PLoS One. 2018;13(2):e0193113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hindle JV, Petrelli A, Clare L, Kalbe E. Nonpharmacological enhancement of cognitive function in Parkinson’s disease: a systematic review. Mov Disord. 2013;28(8):1034–49.
Article
PubMed
Google Scholar
Wu PL, Lee M, Huang TT. Effectiveness of physical activity on patients with depression and Parkinson’s disease: a systematic review. PLoS One. 2017;12(7):e0181515.
Article
PubMed
PubMed Central
CAS
Google Scholar
Riedel O, Klotsche J, Spottke A, et al. Frequency of dementia, depression, and other neuropsychiatric symptoms in 1,449 outpatients with Parkinson’s disease. J Neurol. 2010;257(7):1073–82.
Article
PubMed
Google Scholar
Aarsland D, Creese B, Politis M, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13(4):217–31.
Article
PubMed
PubMed Central
Google Scholar
Kim DW, Hassett LM, Nguy V, Allen NE. A comparison of activity monitor data from devices worn on the wrist and the waist in people with Parkinson’s disease. Mov Disord Clin Pract. 2019;6(8):693–9.
Article
PubMed
PubMed Central
Google Scholar
Benka Wallen M, Franzen E, Nero H, Hagstromer M. Levels and patterns of physical activity and sedentary behavior in elderly people with mild to moderate Parkinson disease. Phys Ther. 2015;95(8):1135–41.
Article
PubMed
Google Scholar
van Nimwegen M, Speelman AD, Hofman-van Rossum EJ, et al. Physical inactivity in Parkinson's disease. J Neurol. 2011;258(12):2214–21.
Article
PubMed
PubMed Central
Google Scholar
Lord S, Godfrey A, Galna B, Mhiripiri D, Burn D, Rochester L. Ambulatory activity in incident Parkinson's: more than meets the eye? J Neurol. 2013;260(12):2964–72.
Article
PubMed
Google Scholar
Christiansen C, Moore C, Schenkman M, et al. Factors associated with ambulatory activity in De novo Parkinson disease. J Neurol Phys Ther. 2017;41(2):93–100.
Article
PubMed
PubMed Central
Google Scholar
Tudor-Locke C, Craig CL, Aoyagi Y, et al. How many steps/day are enough? For older adults and special populations. Int J Behav Nutr Phys Act. 2011;8:80.
Article
PubMed
PubMed Central
Google Scholar
Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index: <5000 steps/day. Appl Physiol Nutr Metab. 2013;38(2):100–14.
Article
PubMed
Google Scholar
Paul SS, Ellis TD, Dibble LE, et al. Obtaining reliable estimates of ambulatory physical activity in people with Parkinson’s disease. J Parkinsons Dis. 2016;6(2):301–5.
Article
PubMed
Google Scholar
Nero H, Benka Wallen M, Franzen E, Conradsson D, Stahle A, Hagstromer M. Objectively assessed physical activity and its association with balance, physical function and dyskinesia in Parkinson’s disease. J Parkinsons Dis. 2016;6(4):833–40.
Article
CAS
PubMed
Google Scholar
Cavanaugh JT, Ellis TD, Earhart GM, Ford MP, Foreman KB, Dibble LE. Capturing ambulatory activity decline in Parkinson’s disease. J Neurol Phys Ther. 2012;36(2):51–7.
Article
PubMed
PubMed Central
Google Scholar
Cavanaugh JT, Ellis TD, Earhart GM, Ford MP, Foreman KB, Dibble LE. Toward understanding ambulatory activity decline in Parkinson disease. Phys Ther. 2015;95(8):1142–50.
Article
PubMed
PubMed Central
Google Scholar
Dowd KP, Szeklicki R, Minetto MA, et al. A systematic literature review of reviews on techniques for physical activity measurement in adults: a DEDIPAC study. Int J Behav Nutr Phys Act. 2018;15(1):15.
Article
PubMed
PubMed Central
Google Scholar
Mesquita R, Spina G, Pitta F, et al. Physical activity patterns and clusters in 1001 patients with COPD. Chron Respir Dis. 2017;14(3):256–69.
Article
PubMed
PubMed Central
Google Scholar
Braakhuis HEM, Berger MAM, van der Stok GA, et al. Three distinct physical behavior types in fatigued patients with multiple sclerosis. J Neuroeng Rehabil. 2019;16(1):105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the balance evaluation systems test: the mini-BESTest. J Rehabil Med. 2010;42(4):323–31.
Article
PubMed
Google Scholar
Copeland JL, Esliger DW. Accelerometer assessment of physical activity in active, healthy older adults. J Aging Phys Act. 2009;17:17–30.
Article
PubMed
Google Scholar
Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the timed “up & go” test in people with Parkinson disease. Phys Ther. 2001;81(2):810–8.
Article
CAS
PubMed
Google Scholar
Evenson KR, Wen F, Hales D, Herring AH. National youth sedentary behavior and physical activity daily patterns using latent class analysis applied to accelerometry. Int J Behav Nutr Phys Act. 2016;13:55.
Article
PubMed
PubMed Central
Google Scholar
Chastin SF, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dontje ML, de Greef MH, Speelman AD, et al. Quantifying daily physical activity and determinants in sedentary patients with Parkinson's disease. Parkinsonism Relat Disord. 2013;19(10):878–82.
Article
CAS
PubMed
Google Scholar
Hiorth YH, Larsen JP, Lode K, et al. Impact of falls on physical activity in people with Parkinson's disease. J Parkinsons Dis. 2016;6(1):175–82.
Article
PubMed
Google Scholar
Chastin SF, Baker K, Jones D, Burn D, Granat MH, Rochester L. The pattern of habitual sedentary behavior is different in advanced Parkinson’s disease. Mov Disord. 2010;25(13):2114–20.
Article
PubMed
Google Scholar
Ellingson LD, Zaman A, Stegemoller EL. Sedentary behavior and quality of life in individuals with Parkinson’s disease. Neurorehabil Neural Repair. 2019;33(8):595–601.
Article
PubMed
Google Scholar
Dohrn IM, Kwak L, Oja P, Sjostrom M, Hagstromer M. Replacing sedentary time with physical activity: a 15-year follow-up of mortality in a national cohort. Clin Epidemiol. 2018;10:179–86.
Article
PubMed
PubMed Central
Google Scholar
Prince SA, Saunders TJ, Gresty K, Reid RD. A comparison of the effectiveness of physical activity and sedentary behaviour interventions in reducing sedentary time in adults: a systematic review and meta-analysis of controlled trials. Obes Rev. 2014;15(11):905–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthews CE, Moore SC, Sampson J, et al. Mortality benefits for replacing sitting time with different physical activities. Med Sci Sports Exerc. 2015;47(9):1833–40.
Article
PubMed
PubMed Central
Google Scholar
Ellis T, Boudreau JK, DeAngelis TR, et al. Barriers to exercise in people with Parkinson disease. Phys Ther. 2013;93(5):628–36.
Article
PubMed
PubMed Central
Google Scholar
Afshari M, Yang A, Bega D. Motivators and barriers to exercise in Parkinson’s disease. J Parkinsons Dis. 2017;7(4):703–11.
Article
PubMed
Google Scholar
Powell KE, King AC, Buchner DM, et al. The Scientific Foundation for the physical activity guidelines for Americans, 2nd edition. J Phys Act Health. 2018:1–11.
Porta M, Pilloni G, Pili R, et al. Association between objectively measured physical activity and gait patterns in people with Parkinson’s disease: results from a 3-month monitoring. Parkinson’s Dis. 2018;2018:7806574.
Google Scholar
Elbers R, van Wegen EE, Rochester L, et al. Is impact of fatigue an independent factor associated with physical activity in patients with idiopathic Parkinson's disease? Mov Disord. 2009;24(10):1512–8.
Article
PubMed
Google Scholar