Jokinen H, Melkas S, Ylikoski R, Pohjasvaara T, Kaste M, Erkinjuntti T, et al. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol. 2015;22(9):1288–94.
Article
CAS
PubMed
Google Scholar
Pendlebury ST, Rothwell PM. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford vascular study. Lancet Neurol. 2019;18(3):248–58.
Article
PubMed
PubMed Central
Google Scholar
Nys GMS, van Zandvoort MJE, de Kort PLM, van der Worp HB, Jansen BPW, Algra A, et al. The prognostic value of domain-specific cognitive abilities in acute first-ever stroke. Neurology. 2005;64(5):821.
Article
CAS
PubMed
Google Scholar
Oksala NK, Jokinen H, Melkas S, Oksala A, Pohjasvaara T, Hietanen M, et al. Cognitive impairment predicts poststroke death in long-term follow-up. J Neurol Neurosurg Psychiatry. 2009;80(11):1230–5.
Article
CAS
PubMed
Google Scholar
American Psychiatric Association, editor. Diagnostic and Statistical Manual of Mental Disorders. 5th ed: American Psychiatric Association; 2013. [cited 2020 Jun 15]. Available from: http://psychiatryonline.org/doi/book/10.1176/appi.books.9780890425596
Sachdev PS, Blacker D, Blazer DG, Ganguli M, Jeste DV, Paulsen JS, et al. Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol. 2014;10(11):634–42.
Article
PubMed
Google Scholar
Mellon L, Brewer L, Hall P, Horgan F, Williams D, Hickey A, et al. Cognitive impairment six months after ischaemic stroke: a profile from the ASPIRE-S study. BMC Neurol. 2015;15(1):31.
Article
PubMed
PubMed Central
Google Scholar
Munthe-Kaas R, Aam S, Ihle-Hansen H, Lydersen S, Knapskog A-B, Wyller TB, et al. Impact of different methods defining post-stroke neurocognitive disorder: the nor-COAST study. Alzheimers Dement. 2020;6(1):e12000.
Google Scholar
Jokinen H, Koikkalainen J, Laakso HM, Melkas S, Nieminen T, Brander A, et al. Global burden of small vessel disease–related brain changes on MRI predicts cognitive and functional decline. Stroke. 2020;51(1):170–8.
Article
PubMed
Google Scholar
Pendlebury ST. Dementia in patients hospitalized with stroke: rates, time course, and Clinico-pathologic factors. Int J Stroke. 2012;7(7):570–81.
Article
PubMed
Google Scholar
Grysiewicz R, Gorelick PB. Key neuroanatomical structures for post-stroke cognitive impairment. Curr Neurol Neurosci Rep. 2012;12(6):703–8.
Article
PubMed
Google Scholar
Schirmer MD, Donahue KL, Nardin MJ, Dalca AV, Giese A-K, Etherton MR, et al. Brain volume: an important determinant of functional outcome after acute ischemic stroke. Mayo Clin Proc. 2020;95(5):955–65.
Article
PubMed
Google Scholar
Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci. 1970;11(3):205–42.
Article
CAS
PubMed
Google Scholar
Puy L, Barbay M, Roussel M, Canaple S, Lamy C, Arnoux A, et al. Neuroimaging determinants of Poststroke cognitive performance. Stroke. 2018;49(11):2666–73.
Article
PubMed
Google Scholar
Sivakumar L, Riaz P, Kate M, Jeerakathil T, Beaulieu C, Buck B, et al. White matter hyperintensity volume predicts persistent cognitive impairment in transient ischemic attack and minor stroke. Int J Stroke. 2017;12(3):264–72.
Article
PubMed
Google Scholar
Molad J, Hallevi H, Korczyn AD, Kliper E, Auriel E, Bornstein NM, et al. Vascular and neurodegenerative markers for the prediction of post-stroke cognitive impairment: results from the TABASCO study. J Alzheimers Dis. 2019;70(3):889–98.
Article
CAS
PubMed
Google Scholar
Thijs VN, Lansberg MG, Beaulieu C, Marks MP, Moseley ME, Albers GW. Is early ischemic lesion volume on diffusion-weighted imaging an independent predictor of stroke outcome?: a multivariable analysis. Stroke. 2000;31(11):2597–602.
Article
CAS
PubMed
Google Scholar
Thingstad P, Askim T, Beyer MK, Braathen G, Ellekjær H, Ihle-Hansen H, et al. The Norwegian Cognitive impairment after stroke study (Nor-COAST): study protocol of a multicentre, prospective cohort study. BMC Neurol. 2018;18(1):193.
Article
PubMed
PubMed Central
Google Scholar
Hatano S. Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ. 1976;54(5):541–53.
CAS
PubMed
PubMed Central
Google Scholar
Schellhorn T, Zucknick M, Askim T, Munthe-Kaas R, Ihle-Hansen H, Seljeseth YM, et al. Vascular brain pathology is more important than neurodegeneration in the pathogenesis of pre-stroke cognitive impairment. medRxiv. 2020;14:1.
Google Scholar
Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, et al. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 2009;45(Supplement 1):S173–86.
Article
PubMed
Google Scholar
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.
Article
CAS
PubMed
Google Scholar
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.
Article
PubMed
Google Scholar
Munsch F, Sagnier S, Asselineau J, Bigourdan A, Guttmann CR, Debruxelles S, et al. Stroke location is an independent predictor of cognitive outcome. Stroke. 2016;47(1):66–73.
Article
CAS
PubMed
Google Scholar
Zhao L, Biesbroek JM, Shi L, Liu W, Kuijf HJ, Chu WW, et al. Strategic infarct location for post-stroke cognitive impairment: a multivariate lesion-symptom mapping study. J Cereb Blood Flow Metab. 2018;38(8):1299–311.
Article
PubMed
Google Scholar
Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10(3):120–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Notter M, Gale D, Herholz P, Markello R, Notter-Bielser M-L, Whitaker K. AtlasReader: a Python package to generate coordinate tables, region labels, and informative figures from statistical MRI images. J Open Source Softw. 2019;4(34):1257.
Article
Google Scholar
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351–6.
Article
CAS
PubMed
Google Scholar
Vernooij MW, Smits M. Structural neuroimaging in aging and Alzheimer’s disease. Neuroimaging Clin N Am. 2012;22(1):33–55.
Article
PubMed
Google Scholar
Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in probable Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55(10):967–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira D, Cavallin L, Larsson E-M, Muehlboeck J-S, Mecocci P, Vellas B, et al. Practical cut-offs for visual rating scales of medial temporal, frontal and posterior atrophy in Alzheimer’s disease and mild cognitive impairment. J Intern Med. 2015;278(3):277–90.
Article
CAS
PubMed
Google Scholar
Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of org 10172 in acute stroke treatment. Stroke. 1993;24(1):35–41.
Article
PubMed
Google Scholar
Reisberg B, Ferris S, de Leon M, Crook T. The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiatr. 1982;139(9):1136–9.
Article
CAS
PubMed
Google Scholar
Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.
Article
PubMed
Google Scholar
StataCorp. Stata. tata Statistical Software: Release 16. College Station: StataCorp LLC; 2019.
Google Scholar
Firbank MJ, Burton EJ, Barber R, Stephens S, Kenny RA, Ballard C, et al. Medial temporal atrophy rather than white matter hyperintensities predict cognitive decline in stroke survivors. Neurobiol Aging. 2007;28(11):1664–9.
Article
PubMed
Google Scholar
Dienanta S, Hamdan M, Soetjipto S, Machin A. The relevance of right and left hemisphere classification to predict cognitive outcome after stroke. J Indonesian Med Assoc. 2020 Sep 3;70(8):151–8.
Article
Google Scholar
Sagnier S, Munsch F, Bigourdan A, Debruxelles S, Poli M, Renou P, et al. The influence of stroke location on cognitive and mood impairment. A voxel-based lesion-symptom mapping study. J Stroke Cerebrovasc Dis. 2019;28(5):1236–42.
Article
PubMed
Google Scholar
Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8(11):1006–18.
Article
PubMed
Google Scholar
Amber B, Boers AM, Bot Joseph CJ, Berkhemer OA, Lingsma HF, Yoo AJ, et al. Associations of ischemic lesion volume with functional outcome in patients with acute ischemic stroke. Stroke. 2017;48(5):1233–40.
Article
Google Scholar
Gerhard V, Rico L, Ashfaq S, Armin S. Initial lesion volume is an independent predictor of clinical stroke outcome at day 90. Stroke. 2012;43(5):1266–72.
Article
Google Scholar
Zaidi SF, Amin A, Xabier U, Mouhammada J, Brian J, Maxim H, et al. Final infarct volume is a stronger predictor of outcome than recanalization in patients with proximal middle cerebral artery occlusion treated with endovascular therapy. Stroke. 2012;43(12):3238–44.
Article
PubMed
Google Scholar
Elijovich L, Goyal N, Mainali S, Hoit D, Arthur AS, Whitehead M, et al. CTA collateral score predicts infarct volume and clinical outcome after endovascular therapy for acute ischemic stroke: a retrospective chart review. J NeuroIntervent Surg. 2016;8(6):559–62.
Article
Google Scholar
Mistry EA, Mistry AM, Mehta T, Arora N, Starosciak AK, Rosa FDLRL, et al. White matter disease and outcomes of mechanical Thrombectomy for acute ischemic stroke. Am J Neuroradiol. 2020;41(4):639–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB, Griffith EY, et al. Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer’s disease incidence. Neurobiol Aging. 2015;36(1):27–32.
Article
CAS
PubMed
Google Scholar
Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ (Clinical research ed). 2010;341:c3666.
Article
Google Scholar
Gorelick PB, Scuteri A, Black SE, DeCarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia. Stroke. 2011;42(9):2672–713.
Article
PubMed
PubMed Central
Google Scholar
Haley AP, Hoth KF, Gunstad J, Paul RH, Jefferson AL, Tate DF, et al. Subjective cognitive complaints relate to white matter Hyperintensities and future cognitive decline in patients with cardiovascular disease. Am J Geriatr Psychiatry. 2009;17(11):976–85.
Article
PubMed
PubMed Central
Google Scholar
Debette S, Beiser A, DeCarli C, Au R, Himali JJ, Kelly-Hayes M, et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality. Stroke. 2010;41(4):600–6.
Article
PubMed
PubMed Central
Google Scholar
Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013 Aug;12(8):822–38.
Article
PubMed
PubMed Central
Google Scholar
Longstreth WT, Arnold AM, Beauchamp NJ, Manolio TA. Lefkowitz David, Jungreis Charles, et al. incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly. Stroke. 2005;36(1):56–61.
Article
PubMed
Google Scholar
Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MMB. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;348(13):1215–22.
Article
PubMed
Google Scholar
Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol. 2015;11(3):157–65.
Article
PubMed
Google Scholar
Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):50–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S, Xavier ALR, et al. Impaired Glymphatic transport in spontaneously hypertensive rats. J Neurosci. 2019;39(32):6365–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6(2):67–77.
Article
PubMed
PubMed Central
Google Scholar
Kim HJ, Ye BS, Yoon CW, Noh Y, Kim GH, Cho H, et al. Cortical thickness and hippocampal shape in pure vascular mild cognitive impairment and dementia of subcortical type. Eur J Neurol. 2014;21(5):744–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Sullivan M, Ngo E, Viswanathan A, Jouvent E, Gschwendtner A, Saemann PG, et al. Hippocampal volume is an independent predictor of cognitive performance in CADASIL. Neurobiol Aging. 2009 Jun;30(6):890–7.
Article
PubMed
Google Scholar
Fiford CM, Manning EN, Bartlett JW, Cash DM, Malone IB, Ridgway GR, et al. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy. Hippocampus. 2017;27(3):249–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cumming TB, Brodtmann A. Can stroke cause neurodegenerative dementia? Int J Stroke. 2011;6(5):416–24.
Article
PubMed
Google Scholar
Bath PM, Wardlaw JM. Pharmacological treatment and prevention of cerebral small vessel disease: a review of potential interventions. Int J Stroke. 2015;10(4):469–78.
Article
PubMed
PubMed Central
Google Scholar
Carole D, John C, Oguzhan C, Véronique B, Marie-Germaine B, Pierre G, et al. Effects of blood pressure lowering on cerebral white matter Hyperintensities in patients with stroke. Circulation. 2005;112(11):1644–50.
Article
Google Scholar
Kuvås KR, Saltvedt I, Aam S, Thingstad P, Ellekjær H, Askim T. <p>The Risk of Selection Bias in a Clinical Multi-Center Cohort Study. Results from the Norwegian Cognitive Impairment After Stroke (Nor-COAST) Study</p> [Internet]. Vol. 12, Clinical Epidemiology. Dove Press; 2020 [cited 2021 Jan 19]. p. 1327–36. Available from: https://www.dovepress.com/the-risk-of-selection-bias-in-a-clinical-multi-center-cohort-study-res-peer-reviewed-fulltext-article-CLEP
Aam S, Einstad MS, Munthe-Kaas R, Lydersen S, Ihle-Hansen H, Knapskog A-B, et al. Post-stroke Cognitive Impairment—Impact of Follow-Up Time and Stroke Subtype on Severity and Cognitive Profile: The Nor-COAST Study. Front Neurol. 2020;11:1 [cited 2021 Jan 17]. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2020.00699/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1389472_54_Neurol_20200728_arts_A.
Article
Google Scholar