Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain. 2006;129(Pt 3):606–16. doi:10.1093/brain/awl007.
PubMed
Google Scholar
Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58(6):840–6. doi:10.1002/ana.20703.
PubMed
Google Scholar
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi:10.1002/ana.22366.
PubMed
PubMed Central
Google Scholar
McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121–7.
CAS
PubMed
Google Scholar
Phadke JG, Best PV. Atypical and clinically silent multiple sclerosis: a report of 12 cases discovered unexpectedly at necropsy. J Neurol Neurosurg Psychiatry. 1983;46(5):414–20.
CAS
PubMed
PubMed Central
Google Scholar
Miller DH, Weinshenker BG, Filippi M, Banwell BL, Cohen JA, Freedman MS, et al. Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler. 2008;14(9):1157–74. doi:10.1177/1352458508096878.
CAS
PubMed
PubMed Central
Google Scholar
Ritchie SA, Jayasinghe D, Davies GF, Ahiahonu P, Ma H, Goodenowe DB. Human serum-derived hydroxy long-chain fatty acids exhibit anti-inflammatory and anti-proliferative activity. J Exp Clin Cancer Res. 2011;30:59. doi:10.1186/1756-9966-30-59.
CAS
PubMed
PubMed Central
Google Scholar
Ritchie SA, Tonita J, Alvi R, Lehotay D, Elshoni H, Myat S, et al. Low-serum GTA-446 anti-inflammatory fatty acid levels as a new risk factor for colon cancer. Int J Cancer J Int du cancer. 2013;132(2):355–62. doi:10.1002/ijc.27673.
CAS
Google Scholar
Pastural E, Ritchie S, Lu Y, Jin W, Kavianpour A, Khine Su-Myat K, et al. Novel plasma phospholipid biomarkers of autism: mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fat Acids. 2009;81(4):253–64. doi:10.1016/j.plefa.2009.06.003.
CAS
Google Scholar
Stadelmann C, Wegner C, Bruck W. Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim Biophys Acta. 2011;1812(2):275–82. doi:10.1016/j.bbadis.2010.07.007.
CAS
PubMed
Google Scholar
van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, et al. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation. 2012;9:156. doi:10.1186/1742-2094-9-156.
PubMed
PubMed Central
Google Scholar
van Horssen J, Witte ME, Ciccarelli O. The role of mitochondria in axonal degeneration and tissue repair in MS. Mult Scler. 2012;18(8):1058–67. doi:10.1177/1352458512452924.
PubMed
Google Scholar
Witte ME, Mahad DJ, Lassmann H, van Horssen J. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol Med. 2014;20(3):179–87. doi:10.1016/j.molmed.2013.11.007.
PubMed
Google Scholar
Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J. Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010;10(5):411–8. doi:10.1016/j.mito.2010.05.014.
CAS
PubMed
Google Scholar
Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PW, et al. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. J Lipid Res. 2007;48(11):2485–98. doi:10.1194/jlr.P700023-JLR200.
CAS
PubMed
Google Scholar
Kim HY. Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem. 2007;282(26):18661–5. doi:10.1074/jbc.R700015200.
CAS
PubMed
Google Scholar
Hayashi H, Hara M. 1-Alkenyl group of ethanolamine plasmalogen derives mainly from de novo-synthesized fatty alcohol within peroxisomes, but not extraperoxisomal fatty alcohol or fatty acid. J Biochem. 1997;121(5):978–83.
CAS
PubMed
Google Scholar
Deon M, Garcia MP, Sitta A, Barschak AG, Coelho DM, Schimit GO, et al. Hexacosanoic and docosanoic acids plasma levels in patients with cerebral childhood and asymptomatic X-linked adrenoleukodystrophy: Lorenzo’s oil effect. Metab Brain Dis. 2008;23(1):43–9.
CAS
PubMed
Google Scholar
Kemp S, Wanders RJ. X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism, ABC half-transporters and the complicated route to treatment. Mol Genet Metab. 2007;90(3):268–76.
CAS
PubMed
Google Scholar
Moser AB, Kreiter N, Bezman L, Lu S, Raymond GV, Naidu S, et al. Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls. Ann Neurol. 1999;45(1):100–10.
CAS
PubMed
Google Scholar
Steinberg S, Jones R, Tiffany C, Moser A. Investigational methods for peroxisomal disorders. Curr Protoc Hum Genet. 2008;Chapter 17:Unit 17 6.
Al-Dirbashi OY, Shaheen R, Al-Sayed M, Al-Dosari M, Makhseed N, Abu Safieh L, et al. Zellweger syndrome caused by PEX13 deficiency: report of two novel mutations. Am J Med Genet A. 2009;149A(6):1219–23.
CAS
PubMed
Google Scholar
Heymans HS, Schutgens RB, Tan R, van den Bosch H, Borst P. Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature. 1983;306(5938):69–70.
CAS
PubMed
Google Scholar
Ritchie SA, Ahiahonu PW, Jayasinghe D, Heath D, Liu J, Lu Y, et al. Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection. BMC Medicine. 2010;8:13. doi:10.1186/1741-7015-8-13.
PubMed
PubMed Central
Google Scholar
Wanders RJ, Vreken P, Ferdinandusse S, Jansen GA, Waterham HR, van Roermund CW, et al. Peroxisomal fatty acid alpha- and beta-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases. Biochem Soc Trans. 2001;29(Pt 2):250–67.
CAS
PubMed
Google Scholar
Wong DA, Bassilian S, Lim S, Paul Lee WN. Coordination of peroxisomal beta-oxidation and fatty acid elongation in HepG2 cells. J Biol Chem. 2004;279(40):41302–9. doi:10.1074/jbc.M406766200.
CAS
PubMed
Google Scholar
Skorin C, Necochea C, Johow V, Soto U, Grau AM, Bremer J, et al. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes. Biochem J. 1992;281(Pt 2):561–7.
CAS
PubMed
PubMed Central
Google Scholar
Tran TN, Christophersen BO. Partitioning of polyunsaturated fatty acid oxidation between mitochondria and peroxisomes in isolated rat hepatocytes studied by HPLC separation of oxidation products. Biochim Biophys Acta. 2002;1583(2):195–204.
CAS
PubMed
Google Scholar
Vickers AE. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol Pathol. 2009;37(1):78–88. doi:10.1177/0192623308329285.
CAS
PubMed
Google Scholar
Kemp S, Valianpour F, Denis S, Ofman R, Sanders RJ, Mooyer P, et al. Elongation of very long-chain fatty acids is enhanced in X-linked adrenoleukodystrophy. Mol Genet Metab. 2005;84(2):144–51.
CAS
PubMed
Google Scholar
LaNoue KF, Walajtys EI, Williamson JR. Regulation of glutamate metabolism and interactions with the citric acid cycle in rat heart mitochondria. J Biol Chem. 1973;248(20):7171–83.
CAS
PubMed
Google Scholar
Schroeder MA, Atherton HJ, Dodd MS, Lee P, Cochlin LE, Radda GK, et al. The cycling of acetyl-coenzyme A through acetylcarnitine buffers cardiac substrate supply: a hyperpolarized 13C magnetic resonance study. Circ Cardiovasc Imaging. 2012;5(2):201–9.
PubMed
PubMed Central
Google Scholar
Kasumov T, Adams JE, Bian F, David F, Thomas KR, Jobbins KA, et al. Probing peroxisomal beta-oxidation and the labelling of acetyl-CoA proxies with [1-(13C)]octanoate and [3-(13C)]octanoate in the perfused rat liver. Biochem J. 2005;389(Pt 2):397–401.
CAS
PubMed
PubMed Central
Google Scholar
Reszko AE, Kasumov T, David F, Jobbins KA, Thomas KR, Hoppel CL, et al. Peroxisomal fatty acid oxidation is a substantial source of the acetyl moiety of malonyl-CoA in rat heart. J Biol Chem. 2004;279(19):19574–9. doi:10.1074/jbc.M400162200.
CAS
PubMed
Google Scholar
McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977;60(1):265–70. doi:10.1172/JCI108764.
CAS
PubMed
PubMed Central
Google Scholar
Hostetler HA, Kier AB, Schroeder F. Very-long-chain and branched-chain fatty acyl-CoAs are high affinity ligands for the peroxisome proliferator-activated receptor alpha (PPARalpha). Biochemistry. 2006;45(24):7669–81. doi:10.1021/bi060198l.
CAS
PubMed
PubMed Central
Google Scholar
Moore SA, Hurt E, Yoder E, Sprecher H, Spector AA. Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res. 1995;36(11):2433–43.
CAS
PubMed
Google Scholar
Gaposchkin DP, Zoeller RA. Plasmalogen status influences docosahexaenoic acid levels in a macrophage cell line. Insights using ether lipid-deficient variants. J Lipid Res. 1999;40(3):495–503.
CAS
PubMed
Google Scholar
Plioplys AV, Plioplys S. Amantadine and L-carnitine treatment of Chronic Fatigue Syndrome. Neuropsychobiology. 1997;35(1):16–23.
CAS
PubMed
Google Scholar
Tomassini V, Pozzilli C, Onesti E, Pasqualetti P, Marinelli F, Pisani A, et al. Comparison of the effects of acetyl L-carnitine and amantadine for the treatment of fatigue in multiple sclerosis: results of a pilot, randomised, double-blind, crossover trial. J Neurol Sci. 2004;218(1–2):103–8. doi:10.1016/j.jns.2003.11.005. S0022510X03003551 [pii].
CAS
PubMed
Google Scholar
Powell BR, Kennaway NG, Rhead WJ, Reece CJ, Burlingame TG, Buist NR. Juvenile multiple sclerosis-like episodes associated with a defect of mitochondrial beta oxidation. Neurology. 1990;40(3 Pt 1):487–91.
CAS
PubMed
Google Scholar
Morris G, Berk M. The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Medicine. 2015;13:68. doi:10.1186/s12916-015-0310-y.
PubMed
PubMed Central
Google Scholar
Haider L. Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis. Oxidative Med Cell Longev. 2015;2015:725370. doi:10.1155/2015/725370.
Google Scholar
Brites P, Mooyer PA, El Mrabet L, Waterham HR, Wanders RJ. Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain. 2009;132(Pt 2):482–92. doi:10.1093/brain/awn295.
PubMed
Google Scholar
Paintlia AS, Gilg AG, Khan M, Singh AK, Barbosa E, Singh I. Correlation of very long chain fatty acid accumulation and inflammatory disease progression in childhood X-ALD: implications for potential therapies. Neurobiol Dis. 2003;14(3):425–39. doi:S0969996103001554 [pii].
CAS
PubMed
Google Scholar
Khan M, Singh J, Gilg AG, Uto T, Singh I. Very long-chain fatty acid accumulation causes lipotoxic response via 5-lipoxygenase in cerebral adrenoleukodystrophy. J Lipid Res. 2010;51(7):1685–95. doi:10.1194/jlr.M002329. doi:jlr.M002329 [pii].
CAS
PubMed
PubMed Central
Google Scholar
Staellberg-Stenhagen S, Svennerholm L. Fatty Acid Composition of Human Brain Sphingomyelins: Normal Variation with Age and Changes during Myelin Disorders. J Lipid Res. 1965;6:146–55.
CAS
PubMed
Google Scholar
Sonnino S, Prinetti A, Nakayama H, Yangida M, Ogawa H, Iwabuchi K. Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj J. 2009;26(6):615–21. doi:10.1007/s10719-008-9215-8.
CAS
PubMed
Google Scholar
Jana A, Pahan K. Sphingolipids in multiple sclerosis. Neruomol Med. 2010;12(4):351–61. doi:10.1007/s12017-010-8128-4.
CAS
Google Scholar
Barger SW, Goodwin ME, Porter MM, Beggs ML. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem. 2007;101(5):1205–13.
CAS
PubMed
PubMed Central
Google Scholar