Rocca WA. The burden of Parkinson's disease: a worldwide perspective. Lancet Neurol. 2018;17(11):928–9. https://doi.org/10.1016/S1474-4422(18)30355-7.
Article
PubMed
Google Scholar
Beauchamp LC, Finkelstein DI, Bush AI, Evans AH, Barnham KJ. Parkinsonism as a third wave of the COVID-19 pandemic? J Parkinson's Dis. 2020;Preprint:1–11.
Google Scholar
Victorino DB, Guimarães-Marques M, Nejm M, Scorza FA, Scorza CA. COVID-19 and Parkinson’s disease: are we dealing with short-term impacts or something worse? J Parkinsons Dis. 2020;10(3):899–902. https://doi.org/10.3233/JPD-202073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease. Prog Neurobiol. 2019;177:73–93. https://doi.org/10.1016/j.pneurobio.2018.09.003.
Article
CAS
PubMed
Google Scholar
Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson's disease. Mov Disord. 2018;33(8):1248–66. https://doi.org/10.1002/mds.27372.
Article
CAS
PubMed
Google Scholar
Scheperjans F, Derkinderen P, Borghammer P. The gut and Parkinson's disease: hype or Hope? J Parkinsons Dis. 2018;8(s1):S31–S9. https://doi.org/10.3233/JPD-181477.
Article
PubMed
PubMed Central
Google Scholar
Lubomski M, Davis RL, Sue CM. The gut microbiota: a novel therapeutic target in Parkinson's disease? Parkinsonism Relat Disord. 2019;66:265–6. https://doi.org/10.1016/j.parkreldis.2019.08.010.
Article
PubMed
Google Scholar
Hamblin MR. Mechanisms and mitochondrial redox signaling in Photobiomodulation. Photochem Photobiol. 2018;94(2):199–212. https://doi.org/10.1111/php.12864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benson P, Kim JY, Riveros C, Camp A, Johnstone DM. Elucidating the time course of the transcriptomic response to photobiomodulation through gene co-expression analysis. J Photochem Photobiol B Biol. 2020;208:111916. https://doi.org/10.1016/j.jphotobiol.2020.111916.
Article
CAS
Google Scholar
Khan I, Tang E, Arany P. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress. Sci Rep. 2015;5(1):10581. https://doi.org/10.1038/srep10581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moro C, Torres N, Arvanitakis K, Cullen K, Chabrol C, Agay D, et al. No evidence for toxicity after long-term photobiomodulation in normal non-human primates. Exp Brain Res. 2017;235(10):3081–92. https://doi.org/10.1007/s00221-017-5048-7.
Article
PubMed
Google Scholar
Cassano P, Caldieraro MA, Norton R, Mischoulon D, Trinh N-H, Nyer M, et al. Reported side effects, weight and blood pressure, after repeated sessions of transcranial Photobiomodulation. Photobiomodul Photomed Laser Surg. 2019;37(10):651–6. https://doi.org/10.1089/photob.2019.4678.
Article
PubMed
Google Scholar
Hamblin MR. Photobiomodulation and the brain–has the light dawned? Biochemist. 2016;38(6):24–8. https://doi.org/10.1042/BIO03806024.
Article
CAS
Google Scholar
Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017;4(3):337–61. https://doi.org/10.3934/biophy.2017.3.337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnstone DM, Mitrofanis J, Stone J. Targeting the body to protect the brain: inducing neuroprotection with remotely-applied near infrared light. Neural Regen Res. 2015;10(3):349–51. https://doi.org/10.4103/1673-5374.153673.
Article
PubMed
PubMed Central
Google Scholar
Liebert A, Bicknell B, Adams R. Protein conformational modulation by photons: a mechanism for laser treatment effects. Med Hypotheses. 2014;82(3):275–81. https://doi.org/10.1016/j.mehy.2013.12.009.
Article
CAS
PubMed
Google Scholar
Blatt A, Elbaz-Greener GA, Tuby H, Maltz L, Siman-Tov Y, Ben-Aharon G, et al. Low-level laser therapy to the bone marrow reduces scarring and improves heart function post-acute myocardial infarction in the pig. Photomed Laser Surg. 2016;34(11):516–24. https://doi.org/10.1089/pho.2015.3988.
Article
PubMed
Google Scholar
Pires de Sousa MV, Ferraresi C, Kawakubo M, Kaippert B, Yoshimura EM, Hamblin MR. Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate. Neurophotonics. 2016;3(1):015003.
Article
PubMed
PubMed Central
Google Scholar
Salehpour F, Hamblin MR. Photobiomodulation for Parkinson’s disease in animal models: a systematic review. Biomolecules. 2020;10(4):610. https://doi.org/10.3390/biom10040610.
Article
CAS
PubMed Central
Google Scholar
Shaw V, Ashkan K, Benabid A, Stone J, Baker G, Mitrofanis J. Neuroprotection of midbrain dopaminergic cell in MPTP-treated mice after near-infrared light treatment. J Comp Neurol. 2010;518(1):25–40. https://doi.org/10.1002/cne.22207.
Article
CAS
PubMed
Google Scholar
Purushothuman S, Johnstone D, Nandasena C, Mitrofanis J, Stone J. Photobiomodulation with near infrared light mitigates Alzheimer's disease-related pathology in cerebral cortex - evidence from two transgenic mouse models. Alzheimers Res Ther. 2014;6(1):2. https://doi.org/10.1186/alzrt232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitrofanis J. Why and how does light therapy offer neuroprotection in Parkinson's disease? Neural Regen Res. 2017;12(4):574–5. https://doi.org/10.4103/1673-5374.205092.
Article
PubMed
PubMed Central
Google Scholar
Kim B, Brandli A, Mitrofanis J, Stone J, Purushothuman S, Johnstone DM. Remote tissue conditioning - an emerging approach for inducing body-wide protection against diseases of ageing. Ageing Res Rev. 2017;37:69–78. https://doi.org/10.1016/j.arr.2017.05.005.
Article
PubMed
Google Scholar
Ganeshan V, Skladnev NV, Kim JY, Mitrofanis J, Stone J, Johnstone DM. Pre-conditioning with remote photobiomodulation modulates the brain transcriptome and protects against MPTP insult in mice. Neuroscience. 2019;400:85.
Article
CAS
PubMed
Google Scholar
Gordon LC, Johnstone DM. Remote photobiomodulation: an emerging strategy for neuroprotection. Neural Regen Res. 2019;14(12):2086–7. https://doi.org/10.4103/1673-5374.262573.
Article
PubMed
PubMed Central
Google Scholar
Stone J, Johnstone D, Mitrofanis J. The helmet experiment in Parkinson's disease: an observation of the mechanism of neuroprotection by near infra-red light. Gold Coast: 9th WALT Congress; 2013.
Google Scholar
Santos L, del Olmo-Aguado S, Valenzuela PL, Winge K, Iglesias-Soler E, Argüelles-Luis J, et al. Photobiomodulation in Parkinson's disease: a randomized controlled trial. Brain Stimul. 2019;12(3):810–2. https://doi.org/10.1016/j.brs.2019.02.009.
Article
PubMed
Google Scholar
Hamilton CL, El Khoury H, Hamilton D, Nicklason F, Mitrofanis J. “Buckets”: early observations on the use of red and infrared light helmets in Parkinson's disease patients. Photobiomodul Photomed Laser Surg. 2019;37(10):615–22. https://doi.org/10.1089/photob.2019.4663.
Article
PubMed
Google Scholar
Berman MH, Nichols TW. Treatment of neurodegeneration: integrating Photobiomodulation and neurofeedback in Alzheimer's dementia and Parkinson's: a review. Photobiomodul Photomed Laser Surg. 2019;37(10):623–34. https://doi.org/10.1089/photob.2019.4685.
Article
PubMed
Google Scholar
Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the timed up & Go Test. Phys Ther. 2000;80(9):896–903. https://doi.org/10.1093/ptj/80.9.896.
Article
CAS
PubMed
Google Scholar
Lang JT, Kassan TO, Devaney LL, Colon-Semenza C, Joseph MF. Test-retest reliability and minimal detectable change for the 10-meter walk test in older adults with Parkinson's disease. J Geriatr Phys Ther. 2016;39(4):165.
Article
PubMed
Google Scholar
Hill K, Bernhardt J, McGann A, Maltese D, Berkovits D. A new test of dynamic standing balance for stroke patients: reliability, validity, and quantitative clinical tests. Physiother Can. 1996;47:257–62.
Article
Google Scholar
Gill DJ, Freshman A, Blender JA, Ravina B. The Montreal cognitive assessment as a screening tool for cognitive impairment in Parkinson's disease. Mov Disord. 2008;23(7):1043–6. https://doi.org/10.1002/mds.22017.
Article
PubMed
Google Scholar
Pullman SL. Spiral analysis: a new technique for measuring tremor with a digitizing tablet. Mov Disord. 1998;13(S3):85–9.
Article
PubMed
Google Scholar
Earhart GM, Cavanaugh JT, Ellis T, Ford MP, Foreman KB, Dibble L. The 9-hole PEG test of upper extremity function: average values, test-retest reliability, and factors contributing to performance in people with Parkinson disease. J Neurol Phys Ther. 2011;35(4):157–63. https://doi.org/10.1097/NPT.0b013e318235da08.
Article
PubMed
Google Scholar
Smithson F, Morris ME, Iansek R. Performance on clinical tests of balance in Parkinson's disease. Phys Ther. 1998;78(6):577–92. https://doi.org/10.1093/ptj/78.6.577.
Article
CAS
PubMed
Google Scholar
Norman GR, Sloan JA, Wyrwich KW. Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care. 2003;41(5):582–92. https://doi.org/10.1097/01.MLR.0000062554.74615.4C.
Article
PubMed
Google Scholar
Cabreira V, Soares-da-Silva P, Massano J. Contemporary options for the management of motor complications in Parkinson’s disease: updated clinical review. Drugs. 2019;79(6):593–608. https://doi.org/10.1007/s40265-019-01098-w.
Article
CAS
PubMed
Google Scholar
Titova N, Chaudhuri KR. Non-motor Parkinson disease: new concepts and personalised management. Med J Aust. 2018;208(9):404–9. https://doi.org/10.5694/mja17.00993.
Article
PubMed
Google Scholar
Lauretani F, Saginario A, Ceda GP, Galuppo L, Ruffini L, Nardelli A, et al. Treatment of the motor and non-motor symptoms in Parkinson’s disease according to cluster symptoms presentation. Curr Drug Targets. 2014;15(10):943–7. https://doi.org/10.2174/1389450115666140826104030.
Article
CAS
PubMed
Google Scholar
Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, et al. Update on treatments for nonmotor symptoms of Parkinson's disease—an evidence-based medicine review. Mov Disord. 2019;34(2):180–98. https://doi.org/10.1002/mds.27602.
Article
PubMed
PubMed Central
Google Scholar
Bratsos S, Karponis D, Saleh SN. Efficacy and safety of deep brain stimulation in the treatment of parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. Cureus. 2018;10(10):e3474.
PubMed
PubMed Central
Google Scholar
Moosa S, Martínez-Fernández R, Elias WJ, Del Alamo M, Eisenberg HM, Fishman PS. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson's disease. Mov Disord. 2019;34(9):1243–51. https://doi.org/10.1002/mds.27779.
Article
PubMed
Google Scholar
Antonini A, Bravi D, Sandre M, Bubacco L. Immunization therapies for Parkinson’s disease: state of the art and considerations for future clinical trials. Expert Opin Investig Drugs. 2020;29(7):685–95. https://doi.org/10.1080/13543784.2020.1771693.
Article
CAS
PubMed
Google Scholar
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020;21(2):103–15. https://doi.org/10.1038/s41583-019-0257-7.
Article
CAS
PubMed
Google Scholar
Soh S-E, Morris ME, McGinley JL. Determinants of health-related quality of life in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2011;17(1):1–9. https://doi.org/10.1016/j.parkreldis.2010.08.012.
Article
PubMed
Google Scholar
Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the timed “up & go” test in people with Parkinson disease. Phys Ther. 2001;81(2):810–8. https://doi.org/10.1093/ptj/81.2.810.
Article
CAS
PubMed
Google Scholar
Paker N, Bugdayci D, Goksenoglu G, Demircioğlu DT, Kesiktas N, Ince N. Gait speed and related factors in Parkinson’s disease. J Phys Ther Sci. 2015;27(12):3675–9. https://doi.org/10.1589/jpts.27.3675.
Article
PubMed
PubMed Central
Google Scholar
Bloem BR, Grimbergen YAM, Cramer M, Willemsen M, Zwinderman AH. Prospective assessment of falls in Parkinson's disease. J Neurol. 2001;248(11):950–8. https://doi.org/10.1007/s004150170047.
Article
CAS
PubMed
Google Scholar
Rahmati Z, Behzadipour S, Schouten AC, Taghizadeh G, Firoozbakhsh K. Postural control learning dynamics in Parkinson’s disease: early improvement with plateau in stability, and continuous progression in flexibility and mobility. Biomed Eng Online. 2020;19:1–22.
Article
Google Scholar
Barbosa AF, Chen J, Freitag F, Valente D, Souza CO, Voos MC, et al. gait, posture and cognition in Parkinson's disease. Dement Neuropsychol. 2016;10(4):280–6. https://doi.org/10.1590/s1980-5764-2016dn1004005.
Article
PubMed
PubMed Central
Google Scholar
Christofoletti G, Andrade LP, Beinotti F, Borges G. Cognition and dual-task performance in older adults with Parkinson’s and Alzheimer’s disease. Int J Gen Med. 2014;7:383.
Article
PubMed
PubMed Central
Google Scholar
Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson's disease. Brain Pathol. 2010;20(3):633–9. https://doi.org/10.1111/j.1750-3639.2009.00369.x.
Article
PubMed
PubMed Central
Google Scholar
Mazancova AF, Růžička E, Jech R, Bezdicek O. Test the best: classification accuracies of four cognitive rating scales for Parkinson’s disease mild cognitive impairment. Arch Clin Neuropsychol. 2020;35(7):1069–77. https://doi.org/10.1093/arclin/acaa039.
Article
Google Scholar
Naeser MA, Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma. 2014;31(11):1008–17. https://doi.org/10.1089/neu.2013.3244.
Article
PubMed
PubMed Central
Google Scholar
Chan AS, Lee TL, Yeung MK, Hamblin MR. Photobiomodulation improves the frontal cognitive function of older adults. Int J Geriatr Psychiatry. 2019;34(2):369–77. https://doi.org/10.1002/gps.5039.
Article
PubMed
Google Scholar
Berman MH, Halper JP, Nichols TW, Jarrett H, Lundy A, Huang JH. Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition. J Neurol Neurosci. 2017;8(1):176.
Article
PubMed
PubMed Central
Google Scholar
Salehpour F, Hamblin MR, DiDuro JO. Rapid reversal of cognitive decline, olfactory dysfunction, and quality of life using multi-modality photobiomodulation therapy: case report. Photobiomodul Photomed Laser Surg. 2019;37(3):159–67. https://doi.org/10.1089/photob.2018.4569.
Article
PubMed
Google Scholar
Saltmarche AE, Naeser MA, Ho KF, Hamblin MR, Lim L. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report. Photomed Laser Surg. 2017;35(8):432–41. https://doi.org/10.1089/pho.2016.4227.
Article
PubMed
PubMed Central
Google Scholar
Brooks C, Eden G, Chang A, Demanuele C, Kelley Erb M, Shaafi Kabiri N, et al. Quantification of discrete behavioral components of the MDS-UPDRS. J Clin Neurosci. 2019;61:174–9. https://doi.org/10.1016/j.jocn.2018.10.043.
Article
PubMed
Google Scholar
Regnault A, Boroojerdi B, Meunier J, Bani M, Morel T, Cano S. Does the MDS-UPDRS provide the precision to assess progression in early Parkinson's disease? Learnings from the Parkinson's progression marker initiative cohort. J Neurol. 2019;266(8):1927–36. https://doi.org/10.1007/s00415-019-09348-3.
Article
PubMed
PubMed Central
Google Scholar
Evers LJ, Krijthe JH, Meinders MJ, Bloem BR, Heskes TM. Measuring Parkinson's disease over time: the real-world within-subject reliability of the MDS-UPDRS. Mov Disord. 2019;34(10):1480–7. https://doi.org/10.1002/mds.27790.
Article
PubMed
PubMed Central
Google Scholar
Brusse K, Zimdars S, Zalewski K, Steffen T. Testing functional performance in people with Parkinson disease. Phys Ther. 2005;85(2):134–41. https://doi.org/10.1093/ptj/85.2.134.
Article
PubMed
Google Scholar
Holroyd S, Currie LJ, Wooten GF. Validity, sensitivity and specificity of the mentation, behavior and mood subscale of the UPDRS. Neurol Res. 2008;30(5):493–6. https://doi.org/10.1179/016164107X251772.
Article
PubMed
Google Scholar
Fleischmann M, Vaughan B. Commentary: statistical significance and clinical significance - a call to consider patient reported outcome measures, effect size, confidence interval and minimal clinically important difference (MCID). J Bodyw Mov Ther. 2019;23(4):690–4. https://doi.org/10.1016/j.jbmt.2019.02.009.
Article
PubMed
Google Scholar
Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10(4):407–15. https://doi.org/10.1016/0197-2456(89)90005-6.
Article
CAS
PubMed
Google Scholar
Beaton DE. Simple as possible? Or too simple?: possible limits to the universality of the one half standard deviation. Med Care. 2003;41(5):593–6. https://doi.org/10.1097/01.MLR.0000064706.35861.B4.
Article
PubMed
Google Scholar
Liebert A. Emerging applications of photobiomodulation therapy: the interaction between metabolomics and the microbiome. Photomed Laser Surg. 2018;36(10):515–7. https://doi.org/10.1089/pho.2018.4527.
Article
PubMed
Google Scholar
Chow RT, Heller GZ, Barnsley L. The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain. 2006;124(1–2):201–10. https://doi.org/10.1016/j.pain.2006.05.018.
Article
PubMed
Google Scholar
Shukla AW, Ounpraseuth S, Okun MS, Gray V, Schwankhaus J, Metzer WS. Micrographia and related deficits in Parkinson's disease: a cross-sectional study. BMJ Open. 2012;2(3):e000628.
Article
Google Scholar
Bidet-Ildei C, Pollak P, Kandel S, Fraix V, Orliaguet J. Handwriting in patients with Parkinson disease: effect of l-dopa and stimulation of the sub-thalamic nucleus on motor anticipation. Hum Mov Sci. 2011;30(4):783–91. https://doi.org/10.1016/j.humov.2010.08.008.
Article
PubMed
Google Scholar
de la Fuente-Fernández R, Stoessl AJ. The placebo effect in Parkinson's disease. Trends Neurosci. 2002;25(6):302–6. https://doi.org/10.1016/S0166-2236(02)02181-1.
Article
PubMed
Google Scholar
McCambridge J, Witton J, Elbourne DR. Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. J Clin Epidemiol. 2014;67(3):267–77. https://doi.org/10.1016/j.jclinepi.2013.08.015.
Article
PubMed
PubMed Central
Google Scholar
Benedetti F, Carlino E, Piedimonte A. Increasing uncertainty in CNS clinical trials: the role of placebo, nocebo, and Hawthorne effects. Lancet Neurol. 2016;15(7):736–47. https://doi.org/10.1016/S1474-4422(16)00066-1.
Article
PubMed
Google Scholar
Morberg BM, Malling AS, Jensen BR, Gredal O, Wermuth L, Bech P. The Hawthorne effect as a pre-placebo expectation in Parkinsons disease patients participating in a randomized placebo-controlled clinical study. Nordic J Psychiatry. 2018;72(6):442–6. https://doi.org/10.1080/08039488.2018.1468480.
Article
Google Scholar
Robles-García V, Corral-Bergantiños Y, Espinosa N, Jácome MA, García-Sancho C, Cudeiro J, et al. Spatiotemporal gait patterns during overt and covert evaluation in patients with Parkinson’s disease and healthy subjects: is there a Hawthorne effect? J Appl Biomech. 2015;31(3):189–94. https://doi.org/10.1123/jab.2013-0319.
Article
PubMed
Google Scholar
Choi WJ, Jung JJ, Grantcharov TP. Impact of Hawthorne effect on healthcare professionals: a systematic review. Univ Tor Med J. 2019;96(2):21–32.
Google Scholar
Foreman KB, Sondrup S, Dromey C, Jarvis E, Nissen S, Dibble LE. The effects of practice on the concurrent performance of a speech and postural task in persons with Parkinson disease and healthy controls. Parkinson’s Dis. 2013;2013:987621.
Google Scholar
Casalechi HL, Dumont AJL, Ferreira LAB, de Paiva PRV, Machado CSM, de Carvalho PTC, et al. Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial. Lasers Med Sci. 2020;35(6):1253–62. https://doi.org/10.1007/s10103-019-02898-y.
Article
PubMed
Google Scholar
Lamartiniere R, Bergeron R, Aung-Din R, Bennett M, Stephan W, Banas L. Chapter 42 - Photobiomodulation treatment for brain disorders: posttraumatic stress disorder (PTSD) and dementia. In: Hamblin MR, Huang Y-Y, editors. Photobiomodulation in the Brain: Academic Press; 2019. p. 589–97. https://doi.org/10.1016/B978-0-12-815305-5.00042-7.
Johnston AL, Schiffer F, Ravichandran CT, Polcari A, Teicher MH, Webb RH, et al. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. 2009.
Google Scholar
Zomorrodi R, Loheswaran G, Pushparaj A, Lim L. Pulsed near infrared transcranial and intranasal photobiomodulation significantly modulates neural oscillations: a pilot exploratory study. Sci Rep. 2019;9(1):1–11.
Article
CAS
Google Scholar
El Khoury H, Mitrofanis J, Henderson LA. Exploring the effects of near infrared light on resting and evoked brain activity in humans using magnetic resonance imaging. Neuroscience. 2019;422:161–71. https://doi.org/10.1016/j.neuroscience.2019.10.037.
Article
CAS
PubMed
Google Scholar
Hamilton C, Hamilton D, Nicklason F, Mitrofanis J. Transcranial photobiomodulation therapy: observations from four movement disorder patients. In: Caldieraro M, Cassano P, editors. Photobiomodulation in the Brain: Elsevier; 2019. p. 463–72. https://doi.org/10.1016/B978-0-12-815305-5.00033-6.
Cassano P, Petrie S, Hamblin M, Henderson T, Iosifescu D. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics. 2016;3(3):031404. https://doi.org/10.1117/1.NPh.3.3.031404.
Article
PubMed
PubMed Central
Google Scholar
Lima AAM, Spínola LG, Baccan G, Correia K, Oliva M, Vasconcelos JF, et al. Evaluation of corticosterone and IL-1β, IL-6, IL-10 and TNF-α expression after 670-nm laser photobiomodulation in rats. Lasers Med Sci. 2014;29(2):709–15. https://doi.org/10.1007/s10103-013-1356-8.
Article
PubMed
Google Scholar
Al Amir Dache Z, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020;34(3):3616–30. https://doi.org/10.1096/fj.201901917RR.
Article
CAS
PubMed
Google Scholar