Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JB, et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 2014;13(7):686–99. https://doi.org/10.1016/s1474-4422(14)70065-1.
Article
Google Scholar
Hodges JR, Piguet O. Progress and challenges in frontotemporal dementia research: a 20-year review. J Alzheimers Dis. 2018;62(3):1467–80. https://doi.org/10.3233/jad-171087.
Article
Google Scholar
Parra MA, Baez S, Allegri R, Nitrini R, Lopera F, Slachevsky A, et al. Dementia in Latin America: assessing the present and envisioning the future. Neurology. 2018;90(5):222–31. https://doi.org/10.1212/wnl.0000000000004897.
Article
Google Scholar
Chen Q, Kantarci K. Imaging biomarkers for neurodegeneration in presymptomatic familial frontotemporal lobar degeneration. Front Neurol. 2020;11:80.
Article
Google Scholar
Whitwell JL, Boeve BF, Weigand SD, Senjem ML, Gunter JL, Baker MC, et al. Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images. Eur J Neurol. 2015;22(5):745–52. https://doi.org/10.1111/ene.12675.
Article
CAS
Google Scholar
Whitwell JL, Weigand SD, Boeve BF, Senjem ML, Gunter JL, DeJesus-Hernandez M, et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain. 2012;135(Pt 3):794–806. https://doi.org/10.1093/brain/aws001.
Article
Google Scholar
Heuer HW, Wang P, Rascovsky K, Wolf A, Appleby B, Bove J, et al. Comparison of sporadic and familial behavioral variant frontotemporal dementia (FTD) in a North American cohort. Alzheimers Dement. 2020;16(1):60–70. https://doi.org/10.1002/alz.12046.
Article
Google Scholar
Ramos EM, Dokuru DR, Van Berlo V, Wojta K, Wang Q, Huang AY, et al. Genetic screening of a large series of North American sporadic and familial frontotemporal dementia cases. Alzheimers Dement. 2020;16(1):118–30. https://doi.org/10.1002/alz.12011.
Article
Google Scholar
Ciani M, Benussi L, Bonvicini C, Ghidoni R. Genome wide association study and next generation sequencing: a glimmer of light toward new possible horizons in frontotemporal dementia research. Front Neurosci. 2019;13:506. https://doi.org/10.3389/fnins.2019.00506.
Article
Google Scholar
Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 2015;130(1):77–92. https://doi.org/10.1007/s00401-015-1436-x.
Article
CAS
Google Scholar
Guerreiro RJ, Lohmann E, Brás JM, Gibbs JR, Rohrer JD, Gurunlian N, et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 2013;70(1):78–84. https://doi.org/10.1001/jamaneurol.2013.579.
Article
Google Scholar
Borroni B, Ferrari F, Galimberti D, Nacmias B, Barone C, Bagnoli S, et al. Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiol Aging. 2014;35(4):934.e7-e10. https://doi.org/10.1016/j.neurobiolaging.2013.09.017.
Article
CAS
Google Scholar
Verpillat P, Camuzat A, Hannequin D, Thomas-Anterion C, Puel M, Belliard S, et al. Association between the extended tau haplotype and frontotemporal dementia. Arch Neurol. 2002;59(6):935–9. https://doi.org/10.1001/archneur.59.6.935.
Article
Google Scholar
Verpillat P, Camuzat A, Hannequin D, Thomas-Anterion C, Puel M, Belliard S, et al. Apolipoprotein E gene in frontotemporal dementia: an association study and meta-analysis. Eur J Hum Genet. 2002;10(7):399–405. https://doi.org/10.1038/sj.ejhg.5200820.
Article
CAS
Google Scholar
Seripa D, Bizzarro A, Panza F, Acciarri A, Pellegrini F, Pilotto A, et al. The APOE gene locus in frontotemporal dementia and primary progressive aphasia. Arch Neurol. 2011;68(5):622–8. https://doi.org/10.1001/archneurol.2011.90.
Article
Google Scholar
Rosso SM, Landweer EJ, Houterman M, Donker Kaat L, van Duijn CM, van Swieten JC. Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case–control study. J Neurol Neurosurg Psychiatry. 2003;74(11):1574. https://doi.org/10.1136/jnnp.74.11.1574.
Article
CAS
Google Scholar
Capozzo R, Sassi C, Hammer MB, Arcuti S, Zecca C, Barulli MR, et al. Clinical and genetic analyses of familial and sporadic frontotemporal dementia patients in Southern Italy. Alzheimers Dement. 2017;13(8):858–69. https://doi.org/10.1016/j.jalz.2017.01.011.
Article
Google Scholar
Parra MA, Baez S, Sedeño L, Gonzalez Campo C, Santamaría-García H, Aprahamian I, et al. Dementia in Latin America: Paving the way toward a regional action plan. Alzheimers Dement. 2021;17(2):295–313. https://doi.org/10.1002/alz.12202. Epub 2020 Nov 20. PMID: 33634602; PMCID: PMC7984223.
Ramos C, Aguillon D, Cordano C, Lopera F. Genetics of dementia: insights from Latin America. Dementia & neuropsychologia. 2020;14(3):223–36. https://doi.org/10.1590/1980-57642020dn14-030004.
Article
Google Scholar
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391–9.
Article
CAS
Google Scholar
Jones AR, Overly CC, Sunkin SM. The Allen Brain Atlas: 5 years and beyond. Nat Rev Neurosci. 2009;10(11):821–8. https://doi.org/10.1038/nrn2722.
Article
CAS
Google Scholar
Crawford JR, Garthwaite PH. Investigation of the single case in neuropsychology: confidence limits on the abnormality of test scores and test score differences. Neuropsychologia. 2002;40(8):1196–208. https://doi.org/10.1016/s0028-3932(01)00224-x.
Article
CAS
Google Scholar
Crawford JR, Garthwaite PH, Howell DC. On comparing a single case with a control sample: an alternative perspective. Neuropsychologia. 2009;47(13):2690–5. https://doi.org/10.1016/j.neuropsychologia.2009.04.011.
Article
Google Scholar
Crawford JR, Garthwaite PH, Ryan K. Comparing a single case to a control sample: testing for neuropsychological deficits and dissociations in the presence of covariates. Cortex. 2011;47(10):1166–78. https://doi.org/10.1016/j.cortex.2011.02.017.
Article
Google Scholar
Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77. https://doi.org/10.1093/brain/awr179. Epub 2011 Aug 2. PMID: 21810890; PMCID: PMC3170532.
Santamaria-Garcia H, Reyes P, Garcia A, Baez S, Martinez A, Santacruz JM, et al. first symptoms and neurocognitive correlates of behavioral variant frontotemporal dementia. J Alzheimers Dis. 2016;54(3):957–70. https://doi.org/10.3233/jad-160501.
Article
Google Scholar
Santamaria-Garcia H, Baez S, Reyes P, Santamaria-Garcia JA, Santacruz-Escudero JM, Matallana D, et al. A lesion model of envy and Schadenfreude: legal, deservingness and moral dimensions as revealed by neurodegeneration. Brain. 2017. https://doi.org/10.1093/brain/awx269.
Article
Google Scholar
Baez S, Couto B, Torralva T, Sposato LA, Huepe D, Montanes P, et al. Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. JAMA Neurol. 2014;71(9):1172–6. https://doi.org/10.1001/jamaneurol.2014.347.
Article
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17(1):122. https://doi.org/10.1186/s13059-016-0974-4.
Article
CAS
Google Scholar
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. https://doi.org/10.1093/nar/gkq603.
Article
CAS
Google Scholar
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23. https://doi.org/10.1038/gim.2015.30.
Article
Google Scholar
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.
Article
CAS
Google Scholar
Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393(6686):702–5. https://doi.org/10.1038/31508.
Article
CAS
Google Scholar
Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68. https://doi.org/10.1016/j.neuron.2011.09.010.
Article
CAS
Google Scholar
Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest. 2019;99(7):912–28. https://doi.org/10.1038/s41374-019-0197-x.
Article
Google Scholar
Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol. 2015;41(1):24–46. https://doi.org/10.1111/nan.12213.
Article
CAS
Google Scholar
Rohrer JD, Ridgway GR, Modat M, Ourselin S, Mead S, Fox NC, et al. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. Neuroimage. 2010;53(3):1070–6. https://doi.org/10.1016/j.neuroimage.2009.12.088.
Article
CAS
Google Scholar
Staffaroni AM, Goh SYM, Cobigo Y, Ong E, Lee SE, Casaletto KB, et al. Rates of brain atrophy across disease stages in familial frontotemporal dementia associated With MAPT, GRN, and C9orf72 pathogenic variants. JAMA Network Open. 2020;3(10):e2022847-e. https://doi.org/10.1001/jamanetworkopen.2020.22847.
Article
Google Scholar
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis. 2020;145:105063. https://doi.org/10.1016/j.nbd.2020.105063.
Article
CAS
Google Scholar
Coppola G, Chinnathambi S, Lee JJ, Dombroski BA, Baker MC, Soto-Ortolaza AI, et al. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer’s diseases. Hum Mol Genet. 2012;21(15):3500–12. https://doi.org/10.1093/hmg/dds161.
Article
CAS
Google Scholar
Mackenzie IR, Rademakers R. The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol. 2008;21(6):693–700. https://doi.org/10.1097/WCO.0b013e3283168d1d.
Article
CAS
Google Scholar
Takada LT. The genetics of monogenic frontotemporal dementia. Dement Neuropsychol. 2015;9(3):219–29. https://doi.org/10.1590/1980-57642015dn93000003.
Article
Google Scholar
Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–72.
Article
CAS
Google Scholar
Cheng Y-W, Lee M-J, Chen T-F, Cheng T-W, Lai Y-M, Hua M-S, et al. A single nucleotide TDP-43 mutation within a Taiwanese family: a multifaceted demon. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17(3–4):292–4.
Article
Google Scholar
Rooij J, Mol M, Melhem S, Van der Wal P, Arp P, Paron F, et al. Somatic TARDBP variants as cause of semantic dementia. Brain. 2020;143(12):3827–41. https://doi.org/10.1093/brain/awaa317.
Article
Google Scholar
Giraldo M, Lopera F, Siniard AL, Corneveaux JJ, Schrauwen I, Carvajal J, et al. Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer’s disease. Neurobiol Aging. 2013;34(8):2077.e11-8. https://doi.org/10.1016/j.neurobiolaging.2013.02.016.
Article
CAS
Google Scholar
Altmann A, Cash DM, Bocchetta M, Heller C, Reynolds R, Moore K, et al. Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia. Brain Commun. 2020;2(2):122. https://doi.org/10.1093/braincomms/fcaa122.
Article
CAS
Google Scholar
Ghidoni R, Signorini S, Barbiero L, Sina E, Cominelli P, Villa A, et al. The H2 MAPT haplotype is associated with familial frontotemporal dementia. Neurobiol Dis. 2006;22(2):357–62.
Article
CAS
Google Scholar
Zhang C-C, Zhu J-X, Wan Y, Tan L, Wang H-F, Yu J-T, et al. Meta-analysis of the association between variants in MAPT and neurodegenerative diseases. Oncotarget. 2017;8(27):44994.
Article
Google Scholar
Simon M, Laws PD, Robert Perneczky MD, Alexander Drzezga MD, Janine Diehl-Schmid MD, Bernd Ibach MD, Josef Bäuml MD, et al. Association of the Tau Haplotype H2 with age at onset and functional alterations of glucose utilization in frontotemporal dementia. Am J Psychiatry. 2007;164(10):1577–84. https://doi.org/10.1176/appi.ajp.2007.06091456.
Article
Google Scholar
Zhao N, Liu C-C, Van Ingelgom AJ, Linares C, Kurti A, Knight JA, et al. APOE ε2 is associated with increased tau pathology in primary tauopathy. Nature Commun. 2018;9(1):4388. https://doi.org/10.1038/s41467-018-06783-0.
Article
CAS
Google Scholar
Goldberg TE, Huey ED, Devanand DP. Association of APOE e2 genotype with Alzheimer’s and non-Alzheimer’s neurodegenerative pathologies. Nature Commun. 2020;11(1):4727. https://doi.org/10.1038/s41467-020-18198-x.
Article
CAS
Google Scholar
Tzioras M, Davies C, Newman A, Jackson R, Spires-Jones T. Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2019;45(4):327–46. https://doi.org/10.1111/nan.12529.
Article
CAS
Google Scholar
Lehmann DJ, Smith AD, Combrinck M, Barnetson L, Joachim C. Apolipoprotein E ε2 may be a risk factor for sporadic frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2000;69(3):404. https://doi.org/10.1136/jnnp.69.3.404.
Article
CAS
Google Scholar
Agosta F, Vossel KA, Miller BL, Migliaccio R, Bonasera SJ, Filippi M, et al. Apolipoprotein E ε4 is associated with disease-specific effects on brain atrophy in Alzheimer’s disease and frontotemporal dementia. Proc Natl Acad Sci. 2009;106(6):2018–22. https://doi.org/10.1073/pnas.0812697106.
Article
Google Scholar
Crawford JR, Howell DC. Comparing an individual’s test score against norms derived from small samples. Clin Neuropsychol. 1998;12(4):482–6.
Article
Google Scholar
Crawford JR, Garthwaite PH. Single-case research in neuropsychology: a comparison of five forms of t-test for comparing a case to controls. Cortex. 2012;48(8):1009–16. https://doi.org/10.1016/j.cortex.2011.06.021. Epub 2011 Jul 23. PMID: 21843884.
Crawford JR, Garthwaite PH, Ryan K. Comparing a single case to a control sample: testing for neuropsychological deficits and dissociations in the presence of covariates. Cortex. 2011;47(10):1166–78.
Article
Google Scholar
Straube T, Weisbrod A, Schmidt S, Raschdorf C, Preul C, Mentzel HJ, et al. No impairment of recognition and experience of disgust in a patient with a right-hemispheric lesion of the insula and basal ganglia. Neuropsychologia. 2010;48(6):1735–41.
Article
Google Scholar
Couto B, Sedeno L, Sposato LA, Sigman M, Riccio PM, Salles A, et al. Insular networks for emotional processing and social cognition: comparison of two case reports with either cortical or subcortical involvement. Cortex. 2013;49(5):1420–34. https://doi.org/10.1016/j.cortex.2012.08.006.
Article
Google Scholar
Baez S, Couto B, Herrera E, Bocanegra Y, Trujillo-Orrego N, Madrigal-Zapata L, et al. Tracking the cognitive, social, and neuroanatomical profile in early neurodegeneration: type iii cockayne syndrome. Front Aging Neurosci. 2013;5:80. https://doi.org/10.3389/fnagi.2013.00080.
Article
Google Scholar
Crawford JR, Garthwaite PH, Porter S. Point and interval estimates of effect sizes for the case-controls design in neuropsychology: rationale, methods, implementations, and proposed reporting standards. Cognition and Neuropsychol. 2010;27(3):245–60.
Article
Google Scholar
Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.
Article
Google Scholar
Corwin J, Bylsma FW. Psychological examination of traumatic encephalopathy. Clin Neuropsychol. 1993;7(1):3–21. https://doi.org/10.1080/13854049308401883.
Article
Google Scholar
Rey A. L’examen psychologique dans les cas d’encéphalopathie traumatique. (Les problems.) [the psychological examination in cases of traumatic encepholopathy. Problems.]. Archives de Psychologie. 1941;28:215–85.
Google Scholar
Gleichgerrcht E, Torralva T, Rattazzi A, Marenco V, Roca M, Manes F. Selective impairment of cognitive empathy for moral judgment in adults with high functioning autism. Soc Cogn Affect Neurosci. 2013;8:780–8.
Article
Google Scholar
Torralva T, Roca M, Gleichgerrcht E, López P, Manes F. INECO Frontal Screening (IFS): a brief, sensitive, and specific tool to assess executive functions in dementia–corrected version. J Int Neuropsychol Soc. 2009;15(5):777–86. https://doi.org/10.1017/S1355617709990415.
Article
Google Scholar
Roca M, Torralva T, Gleichgerrcht E, Woolgar A, Thompson R, Duncan J, et al. The role of Area 10 (BA10) in human multitasking and in social cognition: a lesion study. Neuropsychologia. 2011;49(13):3525–31. https://doi.org/10.1016/j.neuropsychologia.2011.09.003.
Article
Google Scholar
Burgess PW, Shallice T. Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia. 1996;34(4):263–72.
Article
CAS
Google Scholar
Baez S, Manes F, Huepe D, Torralva T, Fiorentino N, Richter F, et al. Primary empathy deficits in frontotemporal dementia. Front Aging Neurosci. 2014;6:262. https://doi.org/10.3389/fnagi.2014.00262.
Article
Google Scholar
Baron-Cohen S, Jolliffe T, Mortimore C, Robertson M. Another advanced test of theory of mind: evidence from very high functioning adults with autism or asperger syndrome. J Child Psychol Psychiatry. 1997;38(7):813–22.
Article
CAS
Google Scholar
Carvalho JO, Ready RE, Malloy P, Grace J. Confirmatory factor analysis of the Frontal Systems Behavior Scale (FrSBe). Assessment. 2013;20(5):632–41. https://doi.org/10.1177/1073191113492845.
Article
Google Scholar
Ashburner J, Friston KJ. Voxel-based morphometry–the methods. Neuroimage. 2000;11(6 Pt 1):805–21. https://doi.org/10.1006/nimg.2000.0582.
Article
CAS
Google Scholar
Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(1 Pt 1):21–36. https://doi.org/10.1006/nimg.2001.0786.
Article
CAS
Google Scholar
Garcia AM, Abrevaya S, Kozono G, Cordero IG, Cordoba M, Kauffman MA, et al. The cerebellum and embodied semantics: evidence from a case of genetic ataxia due to STUB1 mutations. J Med Genet. 2017;54(2):114–24. https://doi.org/10.1136/jmedgenet-2016-104148.
Article
CAS
Google Scholar
Lee SE, Tartaglia MC, Yener G, Genç S, Seeley WW, Sanchez-Juan P, et al. Neurodegenerative disease phenotypes in carriers of MAPT p.A152T, a risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease. Alzheimer Dis Assoc Disord. 2013;27(4):302–9. https://doi.org/10.1097/WAD.0b013e31828cc357.
Article
CAS
Google Scholar
Pickering-Brown SM, Rollinson S, Du Plessis D, Morrison KE, Varma A, Richardson AM, et al. Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. Brain. 2008;131(Pt 3):721–31. https://doi.org/10.1093/brain/awm331.
Article
Google Scholar
Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77. https://doi.org/10.1093/brain/awr179.
Article
Google Scholar
Piguet O, Hornberger M, Mioshi E, Hodges JR. Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol. 2011;10(2):162–72. https://doi.org/10.1016/s1474-4422(10)70299-4.
Article
Google Scholar
Sedeno L, Couto B, Garcia-Cordero I, Melloni M, Baez S, Morales Sepulveda JP, et al. Brain network organization and social executive performance in frontotemporal dementia. J Int Neuropsychol Soc. 2016;22(2):250–62. https://doi.org/10.1017/s1355617715000703.
Article
Google Scholar
Whitwell J, Jack C, Boeve B, Senjem M, Baker M, Rademakers R, et al. Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN. Neurology. 2009;72(9):813–20.
Article
CAS
Google Scholar
Whitwell JL, Jack CR Jr, Parisi JE, Knopman DS, Boeve BF, Petersen RC, et al. Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia. J Mol Neurosci. 2011;45(3):372–8. https://doi.org/10.1007/s12031-011-9533-3.
Article
CAS
Google Scholar
D’Ambrogio A, Buratti E, Stuani C, Guarnaccia C, Romano M, Ayala YM, et al. Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res. 2009;37(12):4116–26. https://doi.org/10.1093/nar/gkp342.
Article
CAS
Google Scholar
Borroni B, Bonvicini C, Alberici A, Buratti E, Agosti C, Archetti S, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat. 2009;30(11):E974–83. https://doi.org/10.1002/humu.21100.
Article
CAS
Google Scholar
Mol MO, Nijmeijer SWR, van Rooij JGJ, van Spaendonk RML, Pijnenburg YAL, van der Lee SJ, et al. Distinctive pattern of temporal atrophy in patients with frontotemporal dementia and the I383V variant in <em>TARDBP</em>. J Neurol Neurosurg Psychiatry. 2021;92(7):787–9. https://doi.org/10.1136/jnnp-2020-325150.
Article
Google Scholar
Caroppo P, Camuzat A, Guillot-Noel L, Thomas-Antérion C, Couratier P, Wong TH, et al. Defining the spectrum of frontotemporal dementias associated with TARDBP mutations. Neurol Genet. 2016;2(3):e80.
Article
Google Scholar
Ahmed RM, Iodice V, Daveson N, Kiernan MC, Piguet O, Hodges JR. Autonomic dysregulation in frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2015;86(9):1048. https://doi.org/10.1136/jnnp-2014-309424.
Article
CAS
Google Scholar
Le Ber I, De Septenville A, Guerreiro R, Bras J, Camuzat A, Caroppo P, et al. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol Aging. 2014;35(10):2419-e23.
Google Scholar
Roberson ED, Hesse JH, Rose KD, Slama H, Johnson JK, Yaffe K, et al. Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology. 2005;65(5):719. https://doi.org/10.1212/01.wnl.0000173837.82820.9f.
Article
CAS
Google Scholar
Benussi A, Premi E, Gazzina S, Brattini C, Bonomi E, Alberici A, et al. Progression of behavioral disturbances and neuropsychiatric symptoms in patients with genetic frontotemporal dementia. JAMA Network Open. 2021;4(1):e2030194-e. https://doi.org/10.1001/jamanetworkopen.2020.30194.
Article
Google Scholar
Sobrido M-J, Miller BL, Havlioglu N, Zhukareva V, Jiang Z, Nasreddine ZS, et al. Novel tau polymorphisms, tau haplotypes, and splicing in familial and sporadic frontotemporal dementia. Arch Neurol. 2003;60(5):698–702. https://doi.org/10.1001/archneur.60.5.698.
Article
Google Scholar
Moore KM, Nicholas J, Grossman M, McMillan CT, Irwin DJ, Massimo L, et al. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. The Lancet Neurology. 2020;19(2):145–56. https://doi.org/10.1016/S1474-4422(19)30394-1.
Article
CAS
Google Scholar
Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7. https://doi.org/10.1038/nature24016.
Article
CAS
Google Scholar
Cash DM, Bocchetta M, Thomas DL, Dick KM, van Swieten JC, Borroni B, et al. Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiol Aging. 2018;62:191–6. https://doi.org/10.1016/j.neurobiolaging.2017.10.008.
Article
Google Scholar
Ruiz A, Dolsicardo O, Bullido MJ, Pastor P, Rodríguezrodríguez E, de Munain López A, et al. Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer’s disease and frontotemporal dementia. Neurobiology of Aging. 2014;35(2):444–4. https://doi.org/10.1016/j.neurobiolaging.2013.08.011.
Article
CAS
Google Scholar
Gendron TF, Rademakers R, Petrucelli L. TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43. J Alzheimers Dis. 2013;33(Suppl 1 Suppl):S35-45. https://doi.org/10.3233/jad-2012-129036.
Article
Google Scholar
Chu SA, Flagan TM, Staffaroni AM, Jiskoot LC, Deng J, Spina S, et al. Brain volumetric deficits in MAPT mutation carriers: a multisite study. Ann Clin Transl Neurol. 2021;8(1):95–110. https://doi.org/10.1002/acn3.51249.
Article
CAS
Google Scholar
Floris G, Borghero G, Cannas A, Di Stefano F, Murru MR, Corongiu D, et al. Clinical phenotypes and radiological findings in frontotemporal dementia related to TARDBP mutations. J Neurol. 2015;262(2):375–84. https://doi.org/10.1007/s00415-014-7575-5.
Article
CAS
Google Scholar
Moreno F, Rabinovici GD, Karydas A, Miller Z, Hsu SC, Legati A, et al. A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques. Acta Neuropathol Commun. 2015;3(1):1–13.
Article
Google Scholar
Song W, Hooli B, Mullin K, Jin SC, Cella M, Ulland TK, et al. Alzheimer’s disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. Alzheimers Dement. 2017;13(4):381–7. https://doi.org/10.1016/j.jalz.2016.07.004.
Article
Google Scholar
Ozaki Y, Yoshino Y, Yamazaki K, Sao T, Mori Y, Ochi S, et al. DNA methylation changes at TREM2 intron 1 and TREM2 mRNA expression in patients with Alzheimer’s disease. J Psychiatr Res. 2017;92:74–80.
Article
Google Scholar
Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368(2):107–16. https://doi.org/10.1056/NEJMoa1211103.
Article
CAS
Google Scholar
Luis EO, Ortega-Cubero S, Lamet I, Razquin C, Cruchaga C, Benitez BA, et al. Frontobasal gray matter loss is associated with the TREM2 p.R47H variant. Neurobiol Aging. 2014;35(12):2681–90. https://doi.org/10.1016/j.neurobiolaging.2014.06.007.
Article
CAS
Google Scholar
Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener. 2013;8(1):19. https://doi.org/10.1186/1750-1326-8-19.
Article
CAS
Google Scholar
Rabinovici GD, Stephens ML, Possin KL. Executive dysfunction. Continuum (Minneap Minn). 2015;21(3 Behavioral Neurology and Neuropsychiatry):646–59. https://doi.org/10.1212/01.CON.0000466658.05156.54.
Article
Google Scholar
Jay TR, von Saucken VE, Landreth GE. TREM2 in Neurodegenerative Diseases. Mol Neurodegener. 2017;12(1):56. https://doi.org/10.1186/s13024-017-0197-5.
Article
CAS
Google Scholar
Llibre-Guerra JJ, Behrens MI, Hosogi ML, Montero L, Torralva T, Custodio N, et al. Frontotemporal dementias in latin america: history, epidemiology, genetics, and clinical research. Front Neurol. 2021;12:710332.
Article
Google Scholar
Ramos C, Aguillon D, Cordano C, Lopera F. Genetics of dementia: insights from Latin America. Dement Neuropsychol. 2020;14(3):223–36. https://doi.org/10.1590/1980-57642020dn14-030004.
Article
Google Scholar
Acosta-Uribe J, Aguillón D, Cochran JN, Giraldo M, Madrigal L, Killingsworth BW, et al. A neurodegenerative disease landscape of rare mutations in Colombia due to founder effects. Genome Medicine. 2022;14(1):27. https://doi.org/10.1186/s13073-022-01035-9.
Article
CAS
Google Scholar
Crawford JR, Garthwaite PH. Detecting dissociations in single-case studies: type I errors, statistical power and the classical versus strong distinction. Neuropsychologia. 2006;44(12):2249–58.
Article
Google Scholar
García AM, Sedeño L, Herrera Murcia E, Couto B, Ibáñez A. A lesion-proof brain? multidimensional sensorimotor, cognitive, and socio-affective preservation despite extensive damage in a stroke patient. Front Aging Neurosci. 2017;8:335.
Article
Google Scholar
Ibáñez A, Zimerman M, Sedeño L, Lori N, Rapacioli M, Cardona JF, et al. Early bilateral and massive compromise of the frontal lobes. Neuroimage Clin. 2018;18:543–52. https://doi.org/10.1016/j.nicl.2018.02.026.
Article
Google Scholar
Esteves S, Ramirez Romero DA, Torralva T, Martínez Cuitiño M, Herndon S, Couto B, et al. Posterior cortical atrophy: a single case cognitive and radiological follow-up. Neurocase. 2018;24(1):16–30. https://doi.org/10.1080/13554794.2017.1421667.
Article
Google Scholar
Couto B, Salles A, Sedeño L, Peradejordi M, Barttfeld P, Canales-Johnson A, et al. The man who feels two hearts: the different pathways of interoception. Soc Cogn Affect Neurosci. 2014;9(9):1253–60. https://doi.org/10.1093/scan/nst108.
Article
Google Scholar
Woo CW, Krishnan A, Wager TD. Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. Neuroimage. 2014;91:412–9. https://doi.org/10.1016/j.neuroimage.2013.12.058.
Article
Google Scholar
Lieberman MD, Cunningham WA. Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci. 2009;4(4):423–8. https://doi.org/10.1093/scan/nsp052.
Article
Google Scholar
Grace J, Stout JC, Malloy PF. Assessing frontal lobe behavioral syndromes with the frontal lobe personality scale. Assessment. 1999;6(3):269–84. https://doi.org/10.1177/107319119900600307.
Article
CAS
Google Scholar
Saxon JA, Thompson JC, Harris JM, Richardson AM, Langheinrich T, Rollinson S, et al. Cognition and behaviour in frontotemporal dementia with and without amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2020;91(12):1304–11.
Article
Google Scholar
Malloy P, Tremont G, Grace J, Frakey L. The frontal systems behavior scale discriminates frontotemporal dementia from Alzheimer’s disease. Alzheimers Dement. 2007;3(3):200–3. https://doi.org/10.1016/j.jalz.2007.04.374.
Article
Google Scholar
Santacruz Escudero JM, Beltrán J, Palacios Á, Chimbí CM, Matallana D, Reyes P, et al. neuropsychiatric symptoms as predictors of clinical course in neurodegeneration a longitudinal study. Front Aging Neurosci. 2019;11:176. https://doi.org/10.3389/fnagi.2019.00176.
Article
Google Scholar
Cummins JL. The Neuropsychiatric Inventory Assessing psychopathology in dementia patients. Neurology. 1997;48:10–6. https://doi.org/10.1212/WNL.48.5_Suppl_6.10S.
Article
Google Scholar
Ismail Z, Agüera-Ortiz L, Brodaty H, Cieslak A, Cummings J, Fischer CE, et al. The Mild Behavioral Impairment Checklist (MBI-C): a rating scale for neuropsychiatric symptoms in pre-dementia populations. J Alzheimers Dis. 2017;56(3):929–38. https://doi.org/10.3233/jad-160979.
Article
Google Scholar